BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31010243)

  • 1. High Efficiency Mercury Sorption by Dead Biomass of
    Vega-Páez JD; Rivas RE; Dussán-Garzón J
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Golden Activity of Lysinibacillus sphaericus: New Insights on Gold Accumulation and Possible Nanoparticles Biosynthesis.
    Bustos MC; Ibarra H; Dussán J
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus.
    Velásquez L; Dussan J
    J Hazard Mater; 2009 Aug; 167(1-3):713-6. PubMed ID: 19201532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective Gold Biosorption by Electrospun and Electrosprayed Bio-composites with Immobilized
    Páez-Vélez C; Castro-Mayorga JL; Dussán J
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32110870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Toxic Metals and Control of Mosquitos-borne Disease by Lysinibacillus sphaericus: Dual Benefits for Health and Environment.
    Javier EV; Jenny D
    Biomed Environ Sci; 2016 Mar; 29(3):187-96. PubMed ID: 27109129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein.
    Kinoshita H; Sohma Y; Ohtake F; Ishida M; Kawai Y; Kitazawa H; Saito T; Kimura K
    Res Microbiol; 2013 Sep; 164(7):701-9. PubMed ID: 23603782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5.
    Peña-Montenegro TD; Lozano L; Dussán J
    Stand Genomic Sci; 2015; 10():2. PubMed ID: 25685257
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    ZÁrate A; Florez J; Angulo E; Varela-Prieto L; Infante C; Barrios F; Barraza B; Gallardo DI; Valdés J
    J Microbiol Biotechnol; 2017 Jun; 27(6):1138-1149. PubMed ID: 28301920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.
    Deliz Quiñones K; Hovsepyan A; Oppong-Anane A; Bonzongo JC
    J Hazard Mater; 2016 Apr; 307():184-92. PubMed ID: 26780705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White rot fungus mediated removal of mercury from wastewater.
    Sharma KR; Naruka A; Raja M; Sharma RK
    Water Environ Res; 2022 Jul; 94(7):e10769. PubMed ID: 35861616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury removal during growth of mercury tolerant and self-aggregating Yarrowia spp.
    Oyetibo GO; Miyauchi K; Suzuki H; Endo G
    AMB Express; 2016 Dec; 6(1):99. PubMed ID: 27739052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption characteristics of elemental mercury in mercury chloride solutions.
    Ma Y; Xu H; Qu Z; Yan N; Wang W
    J Environ Sci (China); 2014 Nov; 26(11):2257-65. PubMed ID: 25458680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of metal sorption behavior of Slp1 from Lysinibacillus sphaericus JG-B53: a combined study using QCM-D, ICP-MS and AFM.
    Suhr M; Unger N; Viacava KE; Günther TJ; Raff J; Pollmann K
    Biometals; 2014 Dec; 27(6):1337-49. PubMed ID: 25273819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of
    Porwal S; Singh R
    Indian J Microbiol; 2016 Dec; 56(4):504-507. PubMed ID: 27784949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacteria as a biosorbent for mercuric ion.
    Cain A; Vannela R; Woo LK
    Bioresour Technol; 2008 Sep; 99(14):6578-86. PubMed ID: 18158240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Removal of Heavy Metals from Polluted Water with High Selectivity for Mercury(II) by 2-Imino-4-thiobiuret-Partially Reduced Graphene Oxide (IT-PRGO).
    Awad FS; AbouZeid KM; El-Maaty WMA; El-Wakil AM; El-Shall MS
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34230-34242. PubMed ID: 28880523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles.
    Arshadi M; Mousavinia F; Khalafi-Nezhad A; Firouzabadi H; Abbaspourrad A
    J Colloid Interface Sci; 2017 Nov; 505():293-306. PubMed ID: 28582722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate
    Upadhyay KH; Vaishnav AM; Tipre DR; Patel BC; Dave SR
    3 Biotech; 2017 Oct; 7(5):313. PubMed ID: 28955610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.