These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

786 related articles for article (PubMed ID: 31010833)

  • 1. Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging.
    Xu Y; Hosny A; Zeleznik R; Parmar C; Coroller T; Franco I; Mak RH; Aerts HJWL
    Clin Cancer Res; 2019 Jun; 25(11):3266-3275. PubMed ID: 31010833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study.
    Hosny A; Parmar C; Coroller TP; Grossmann P; Zeleznik R; Kumar A; Bussink J; Gillies RJ; Mak RH; Aerts HJWL
    PLoS Med; 2018 Nov; 15(11):e1002711. PubMed ID: 30500819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of lung cancer response after nonoperative therapy: tumor diameter, bidimensional product, and volume. A serial CT scan-based study.
    Werner-Wasik M; Xiao Y; Pequignot E; Curran WJ; Hauck W
    Int J Radiat Oncol Biol Phys; 2001 Sep; 51(1):56-61. PubMed ID: 11516851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep segmentation networks predict survival of non-small cell lung cancer.
    Baek S; He Y; Allen BG; Buatti JM; Smith BJ; Tong L; Sun Z; Wu J; Diehn M; Loo BW; Plichta KA; Seyedin SN; Gannon M; Cabel KR; Kim Y; Wu X
    Sci Rep; 2019 Nov; 9(1):17286. PubMed ID: 31754135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer.
    Kuang Q; Feng B; Xu K; Chen Y; Chen X; Duan X; Lei X; Chen X; Li K; Long W
    Cancer Imaging; 2024 Oct; 24(1):140. PubMed ID: 39420411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Validation of a Deep Learning Model for Non-Small Cell Lung Cancer Survival.
    She Y; Jin Z; Wu J; Deng J; Zhang L; Su H; Jiang G; Liu H; Xie D; Cao N; Ren Y; Chen C
    JAMA Netw Open; 2020 Jun; 3(6):e205842. PubMed ID: 32492161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer.
    Fave X; Zhang L; Yang J; Mackin D; Balter P; Gomez D; Followill D; Jones AK; Stingo F; Liao Z; Mohan R; Court L
    Sci Rep; 2017 Apr; 7(1):588. PubMed ID: 28373718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer.
    Zhang H; Wroblewski K; Liao S; Kampalath R; Penney BC; Zhang Y; Pu Y
    Acad Radiol; 2013 Jan; 20(1):32-40. PubMed ID: 22999369
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Ohri N; Bodner WR; Halmos B; Cheng H; Perez-Soler R; Keller SM; Kalnicki S; Garg M
    Int J Radiat Oncol Biol Phys; 2017 Feb; 97(2):372-380. PubMed ID: 28068244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer.
    Yu W; Tang C; Hobbs BP; Li X; Koay EJ; Wistuba II; Sepesi B; Behrens C; Rodriguez Canales J; Parra Cuentas ER; Erasmus JJ; Court LE; Chang JY
    Int J Radiat Oncol Biol Phys; 2018 Nov; 102(4):1090-1097. PubMed ID: 29246722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning.
    Ma Y; Li Q
    Cancer Radiother; 2023 Dec; 27(8):705-711. PubMed ID: 37932182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [18F] FDG Positron Emission Tomography (PET) Tumor and Penumbra Imaging Features Predict Recurrence in Non-Small Cell Lung Cancer.
    Mattonen SA; Davidzon GA; Bakr S; Echegaray S; Leung ANC; Vasanawala M; Horng G; Napel S; Nair VS
    Tomography; 2019 Mar; 5(1):145-153. PubMed ID: 30854452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning classification of lung cancer histology using CT images.
    Chaunzwa TL; Hosny A; Xu Y; Shafer A; Diao N; Lanuti M; Christiani DC; Mak RH; Aerts HJWL
    Sci Rep; 2021 Mar; 11(1):5471. PubMed ID: 33727623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lung cancer histology classification from CT images based on radiomics and deep learning models.
    Marentakis P; Karaiskos P; Kouloulias V; Kelekis N; Argentos S; Oikonomopoulos N; Loukas C
    Med Biol Eng Comput; 2021 Jan; 59(1):215-226. PubMed ID: 33411267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning combined with radiomics may optimize the prediction in differentiating high-grade lung adenocarcinomas in ground glass opacity lesions on CT scans.
    Wang X; Zhang L; Yang X; Tang L; Zhao J; Chen G; Li X; Yan S; Li S; Yang Y; Kang Y; Li Q; Wu N
    Eur J Radiol; 2020 Aug; 129():109150. PubMed ID: 32604042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigative expansion of a competing risk model for first failure site in locally advanced non-small cell lung cancer.
    Lacoppidan T; Vogelius IR; Pøhl M; Strange M; Persson GF; Nygård L
    Acta Oncol; 2019 Oct; 58(10):1386-1392. PubMed ID: 31271118
    [No Abstract]   [Full Text] [Related]  

  • 17. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
    Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P
    Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy.
    Pyka T; Bundschuh RA; Andratschke N; Mayer B; Specht HM; Papp L; Zsótér N; Essler M
    Radiat Oncol; 2015 Apr; 10():100. PubMed ID: 25900186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Watch the weathercock: changes in re-staging 18F-FDG PET/CT scan predict the probability of relapse in locally advanced non-small cell lung cancer.
    Marquez-Medina D; Martin-Marco A; Popat S
    Clin Transl Oncol; 2016 Feb; 18(2):228-32. PubMed ID: 26203801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics and deep learning in lung cancer.
    Avanzo M; Stancanello J; Pirrone G; Sartor G
    Strahlenther Onkol; 2020 Oct; 196(10):879-887. PubMed ID: 32367456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.