These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31011185)

  • 1. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads.
    Müller CA; Boemo MA; Spingardi P; Kessler BM; Kriaucionis S; Simpson JT; Nieduszynski CA
    Nat Methods; 2019 May; 16(5):429-436. PubMed ID: 31011185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning.
    Boemo MA
    BMC Genomics; 2021 Jun; 22(1):430. PubMed ID: 34107894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FORK-seq: Single-Molecule Profiling of DNA Replication.
    Hennion M; Theulot B; Arbona JM; Audit B; Hyrien O
    Methods Mol Biol; 2022; 2477():107-128. PubMed ID: 35524115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing.
    Hennion M; Arbona JM; Lacroix L; Cruaud C; Theulot B; Tallec BL; Proux F; Wu X; Novikova E; Engelen S; Lemainque A; Audit B; Hyrien O
    Genome Biol; 2020 May; 21(1):125. PubMed ID: 32456659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide mapping of individual replication fork velocities using nanopore sequencing.
    Theulot B; Lacroix L; Arbona JM; Millot GA; Jean E; Cruaud C; Pellet J; Proux F; Hennion M; Engelen S; Lemainque A; Audit B; Hyrien O; Le Tallec B
    Nat Commun; 2022 Jun; 13(1):3295. PubMed ID: 35676270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads.
    Recanati A; Brüls T; d'Aspremont A
    Bioinformatics; 2017 Oct; 33(20):3188-3194. PubMed ID: 28605450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of DNA combing for studying DNA replication in vivo in yeast and mammalian cells.
    Schwob E; de Renty C; Coulon V; Gostan T; Boyer C; Camet-Gabut L; Amato C
    Methods Mol Biol; 2009; 521():673-87. PubMed ID: 19563133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination.
    McGuffee SR; Smith DJ; Whitehouse I
    Mol Cell; 2013 Apr; 50(1):123-35. PubMed ID: 23562327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA copy-number measurement of genome replication dynamics by high-throughput sequencing: the sort-seq, sync-seq and MFA-seq family.
    Batrakou DG; Müller CA; Wilson RHC; Nieduszynski CA
    Nat Protoc; 2020 Mar; 15(3):1255-1284. PubMed ID: 32051615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NanoSNP: a progressive and haplotype-aware SNP caller on low-coverage nanopore sequencing data.
    Huang N; Xu M; Nie F; Ni P; Xiao CL; Luo F; Wang J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36548365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome.
    Goodwin S; Gurtowski J; Ethe-Sayers S; Deshpande P; Schatz MC; McCombie WR
    Genome Res; 2015 Nov; 25(11):1750-6. PubMed ID: 26447147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D.
    Jenjaroenpun P; Wongsurawat T; Pereira R; Patumcharoenpol P; Ussery DW; Nielsen J; Nookaew I
    Nucleic Acids Res; 2018 Apr; 46(7):e38. PubMed ID: 29346625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication dynamics of the yeast genome.
    Raghuraman MK; Winzeler EA; Collingwood D; Hunt S; Wodicka L; Conway A; Lockhart DJ; Davis RW; Brewer BJ; Fangman WL
    Science; 2001 Oct; 294(5540):115-21. PubMed ID: 11588253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome.
    Sekedat MD; Fenyö D; Rogers RS; Tackett AJ; Aitchison JD; Chait BT
    Mol Syst Biol; 2010; 6():353. PubMed ID: 20212525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing.
    Bianco JN; Poli J; Saksouk J; Bacal J; Silva MJ; Yoshida K; Lin YL; Tourrière H; Lengronne A; Pasero P
    Methods; 2012 Jun; 57(2):149-57. PubMed ID: 22579803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA.
    Koh KD; Balachander S; Hesselberth JR; Storici F
    Nat Methods; 2015 Mar; 12(3):251-7, 3 p following 257. PubMed ID: 25622106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains.
    Lengronne A; Pasero P; Bensimon A; Schwob E
    Nucleic Acids Res; 2001 Apr; 29(7):1433-42. PubMed ID: 11266543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of replication origins using comparative genomics and recombinational ARS assay.
    Nieduszynski CA; Donaldson AD
    Methods Mol Biol; 2009; 521():295-313. PubMed ID: 19563113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Bromodeoxyuridine Immunoprecipitation Analyzed by High-Throughput Sequencing (qBrdU-Seq or QBU).
    Haye-Bertolozzi JE; Aparicio OM
    Methods Mol Biol; 2018; 1672():209-225. PubMed ID: 29043627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamics of genome replication using deep sequencing.
    Müller CA; Hawkins M; Retkute R; Malla S; Wilson R; Blythe MJ; Nakato R; Komata M; Shirahige K; de Moura AP; Nieduszynski CA
    Nucleic Acids Res; 2014 Jan; 42(1):e3. PubMed ID: 24089142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.