These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31011602)
1. Production and evaluation of mono- and di-rhamnolipids produced by Rekadwad B; Maske V; Khobragade CN; Kasbe PS Data Brief; 2019 Jun; 24():103890. PubMed ID: 31011602 [TBL] [Abstract][Full Text] [Related]
2. High Di-rhamnolipid Production Using Zhou J; Xue R; Liu S; Xu N; Xin F; Zhang W; Jiang M; Dong W Front Bioeng Biotechnol; 2019; 7():245. PubMed ID: 31696112 [TBL] [Abstract][Full Text] [Related]
3. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178 [TBL] [Abstract][Full Text] [Related]
4. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
5. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Das P; Yang XP; Ma LZ Front Microbiol; 2014; 5():696. PubMed ID: 25566212 [TBL] [Abstract][Full Text] [Related]
6. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA AMB Express; 2020 Nov; 10(1):201. PubMed ID: 33146788 [TBL] [Abstract][Full Text] [Related]
7. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of di-rhamnolipids by the avirulent, mono-rhamnolipid producing strain Pseudomonas aeruginosa ATCC 9027. González-Valdez A; Vázquez-Bueno PG; Hernández-Pineda J; Soberón-Chávez G Biotechnol Lett; 2024 Dec; 46(6):1163-1170. PubMed ID: 39225887 [TBL] [Abstract][Full Text] [Related]
9. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Hošková M; Schreiberová O; Ježdík R; Chudoba J; Masák J; Sigler K; Rezanka T Bioresour Technol; 2013 Feb; 130():510-6. PubMed ID: 23313768 [TBL] [Abstract][Full Text] [Related]
10. Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge. Zhao F; Jiang H; Sun H; Liu C; Han S; Zhang Y RSC Adv; 2019 Jan; 9(6):2885-2891. PubMed ID: 35518985 [TBL] [Abstract][Full Text] [Related]
11. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Rodrigues AI; Gudiña EJ; Teixeira JA; Rodrigues LR Sci Rep; 2017 Oct; 7(1):12907. PubMed ID: 29018256 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of bioprocess factors optimization for enhanced mono-rhamnolipid production by a marine Pseudomonas guguanensis. C RK; R LS; D A; V S; Vasudevan V; Krishnan MEG Int J Biol Macromol; 2018 Mar; 108():531-540. PubMed ID: 29208557 [TBL] [Abstract][Full Text] [Related]
13. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
14. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Zhao F; Yuan M; Lei L; Li C; Xu X Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600 [TBL] [Abstract][Full Text] [Related]
15. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
16. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738 [TBL] [Abstract][Full Text] [Related]
17. Bioprospecting of rhamnolipids production and optimization by an oil-degrading Pseudomonas sp. S2WE isolated from freshwater lake. Phulpoto IA; Wang Y; Qazi MA; Hu B; Ndayisenga F; Yu Z Bioresour Technol; 2021 Mar; 323():124601. PubMed ID: 33385627 [TBL] [Abstract][Full Text] [Related]
18. [Construction of mono/di-rhamnolipid ratios-manipulable strains and characterization of their corresponding surfactants' activity]. Zhao M; Zheng Y; Yu H; Ma L Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):786-798. PubMed ID: 38545977 [TBL] [Abstract][Full Text] [Related]
19. Mono- and di-rhamnolipids mixtures from Pseudomonas aeruginosa for use in extreme conditions of pre- and post-salt oil reservoirs compared with synthetic surfactants. de Castilho LVA; Duarte AM; Pasqualino IP; de Sousa JS; Nogueira FCS; Gomez JGC; Seldin L; Freire DMG Colloids Surf B Biointerfaces; 2025 Jan; 245():114311. PubMed ID: 39405954 [TBL] [Abstract][Full Text] [Related]
20. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]