These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31011602)
21. Antibiofilm effect of mono-rhamnolipids and di-rhamnolipids on carbon steel submitted to oil produced water. Rocha VAL; de Castilho LVA; Castro RPV; Teixeira DB; Magalhães AV; Abreu FA; Cypriano JBS; Gomez JGC; Freire DMG Biotechnol Prog; 2021 May; 37(3):e3131. PubMed ID: 33511791 [TBL] [Abstract][Full Text] [Related]
22. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
23. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
24. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Leite GG; Figueirôa JV; Almeida TC; Valões JL; Marques WF; Duarte MD; Gorlach-Lira K Biotechnol Prog; 2016 Mar; 32(2):262-70. PubMed ID: 26588432 [TBL] [Abstract][Full Text] [Related]
25. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509 [TBL] [Abstract][Full Text] [Related]
26. Molecular identification of rhamnolipids produced by Hosseini S; Sharifi R; Habibi A; Ali Q Front Microbiol; 2024; 15():1459112. PubMed ID: 39234543 [TBL] [Abstract][Full Text] [Related]
27. A novel rhamnolipid-producing Pseudomonas aeruginosa ZS1 isolate derived from petroleum sludge suitable for bioremediation. Cheng T; Liang J; He J; Hu X; Ge Z; Liu J AMB Express; 2017 Dec; 7(1):120. PubMed ID: 28599506 [TBL] [Abstract][Full Text] [Related]
28. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576 [TBL] [Abstract][Full Text] [Related]
29. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Kourmentza C; Costa J; Azevedo Z; Servin C; Grandfils C; De Freitas V; Reis MAM Bioresour Technol; 2018 Jan; 247():829-837. PubMed ID: 30060419 [TBL] [Abstract][Full Text] [Related]
30. Rhamnolipid Micellization and Adsorption Properties. Zhang Y; Placek TL; Jahan R; Alexandridis P; Tsianou M Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232408 [TBL] [Abstract][Full Text] [Related]
31. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA Appl Biochem Biotechnol; 2009 May; 157(2):329-45. PubMed ID: 18584127 [TBL] [Abstract][Full Text] [Related]
32. Rhamnolipid production by Pseudomonas aeruginosa grown on membranes of bacterial cellulose supplemented with corn bran water extract. Conceição KS; de Alencar Almeida M; Sawoniuk IC; Marques GD; de Sousa Faria-Tischer PC; Tischer CA; Vignoli JA; Camilios-Neto D Environ Sci Pollut Res Int; 2020 Aug; 27(24):30222-30231. PubMed ID: 32451891 [TBL] [Abstract][Full Text] [Related]
33. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Varjani SJ; Upasani VN Bioresour Technol; 2016 Nov; 220():175-182. PubMed ID: 27567478 [TBL] [Abstract][Full Text] [Related]
34. Emulsifying Properties of Rhamnolipids and Their In Vitro Antifungal Activity against Plant Pathogenic Fungi. Li D; Tao W; Yu D; Li S Molecules; 2022 Nov; 27(22):. PubMed ID: 36431843 [TBL] [Abstract][Full Text] [Related]
35. Isolation of rhamnolipids-producing cultures from faeces: Influence of interspecies communication on the yield of rhamnolipid congeners. Woźniak-Karczewska M; Myszka K; Sznajdrowska A; Szulc A; Zgoła-Grześkowiak A; Ławniczak Ł; Corvini PF; Chrzanowski Ł N Biotechnol; 2017 May; 36():17-25. PubMed ID: 28043869 [TBL] [Abstract][Full Text] [Related]
36. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]
37. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. Sha R; Jiang L; Meng Q; Zhang G; Song Z J Basic Microbiol; 2012 Aug; 52(4):458-66. PubMed ID: 22052667 [TBL] [Abstract][Full Text] [Related]
38. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Gunther NW; Nuñez A; Fett W; Solaiman DK Appl Environ Microbiol; 2005 May; 71(5):2288-93. PubMed ID: 15870313 [TBL] [Abstract][Full Text] [Related]
39. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications. Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616 [TBL] [Abstract][Full Text] [Related]
40. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Li AH; Xu MY; Sun W; Sun GP Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]