These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31011729)

  • 1. The influence of metal-complexing macrocycle size on intramolecular movement in rotaxanes.
    Woźny M; Tomczyk KM; Więckowska A; Sutuła S; Trzybiński D; Woźniak K; Korybut-Daszkiewicz B
    Dalton Trans; 2019 May; 48(19):6546-6557. PubMed ID: 31011729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [3]rotaxanes composed of two dibenzo-24-crown-8 ether wheels and an azamacrocyclic complex.
    Woźny M; Więckowska A; Trzybiński D; Sutuła S; Domagała S; Woźniak K
    Dalton Trans; 2018 Nov; 47(44):15845-15856. PubMed ID: 30358785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle.
    Waelès P; Fournel-Marotte K; Coutrot F
    Chemistry; 2017 Aug; 23(48):11529-11539. PubMed ID: 28594431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines.
    Busseron E; Coutrot F
    J Org Chem; 2013 Apr; 78(8):4099-106. PubMed ID: 23521611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt
    Yu G; Suzaki Y; Osakada K
    Chem Asian J; 2017 Feb; 12(3):372-377. PubMed ID: 27973709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [2]Pseudorotaxanes, [2]rotaxanes and metal-organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels.
    Mercer DJ; Yacoub J; Zhu K; Loeb SK; Loeb SJ
    Org Biomol Chem; 2012 Aug; 10(30):6094-104. PubMed ID: 22581393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles.
    Gauthier M; Coutrot F
    Chemistry; 2021 Dec; 27(70):17576-17580. PubMed ID: 34738683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [2]Rotaxane with multiple functional groups.
    Saha S; Santra S; Akhuli B; Ghosh P
    J Org Chem; 2014 Nov; 79(22):11170-8. PubMed ID: 25353057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse Anomeric Effect in Large-Amplitude Pyridinium Amide-Containing Mannosyl [2]Rotaxane Molecular Shuttles.
    Riss-Yaw B; Waelès P; Coutrot F
    Chemphyschem; 2016 Jun; 17(12):1860-9. PubMed ID: 27062432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-State Molecular Shuttling of [2]Rotaxanes in Response to Acid/Base and Alkali-Metal Cation Stimuli.
    Kimura M; Mizuno T; Ueda M; Miyagawa S; Kawasaki T; Tokunaga Y
    Chem Asian J; 2017 Jun; 12(12):1381-1390. PubMed ID: 28409890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and investigation of host-[2]rotaxanes that bind metal cations.
    Wang X; Zhu J; Smithrud DB
    J Org Chem; 2010 May; 75(10):3358-70. PubMed ID: 20411910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shuttling dynamics in an acid-base-switchable [2]rotaxane.
    Garaudée S; Silvi S; Venturi M; Credi A; Flood AH; Stoddart JF
    Chemphyschem; 2005 Oct; 6(10):2145-52. PubMed ID: 16208757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled molecular motions in copper-complexed rotaxanes: an XAS study.
    Kern JM; Raehm L; Sauvage JP; Divisia-Blohorn B; Vidal PL
    Inorg Chem; 2000 Apr; 39(7):1555-60. PubMed ID: 12526464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A musclelike [2](2)rotaxane: synthesis, performance, and molecular dynamics simulations.
    Li H; Li X; Wu Y; Agren H; Qu DH
    J Org Chem; 2014 Aug; 79(15):6996-7004. PubMed ID: 25028771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition.
    Aucagne V; Berna J; Crowley JD; Goldup SM; Hänni KD; Leigh DA; Lusby PJ; Ronaldson VE; Slawin AM; Viterisi A; Walker DB
    J Am Chem Soc; 2007 Oct; 129(39):11950-63. PubMed ID: 17845039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation, dynamic behavior, and chemical transformation of Pt complexes with a rotaxane-like structure.
    Suzaki Y; Osakada K
    Chem Asian J; 2006 Sep; 1(3):331-43. PubMed ID: 17441068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic interactions: a cation as solvent-tunable brake.
    Ghosh P; Federwisch G; Kogej M; Schalley CA; Haase D; Saak W; Lützen A; Gschwind RM
    Org Biomol Chem; 2005 Aug; 3(15):2691-700. PubMed ID: 16032347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Metalloporphyrin-Based [2]Rotaxane Molecular Shuttles Stimulated by Neutral Lewis Base and Anion Coordination.
    Wilmore JT; Cheong Tse Y; Docker A; Whitehead C; Williams CK; Beer PD
    Chemistry; 2023 Jun; 29(33):e202300608. PubMed ID: 36929530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally Driven Dynamics of a Rotaxane Wheel about an Imidazolium Axle inside a Metal-Organic Framework.
    Farahani N; Zhu K; O'Keefe CA; Schurko RW; Loeb SJ
    Chempluschem; 2016 Aug; 81(8):836-841. PubMed ID: 31968814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of a pH-Sensitive Hetero[4]Rotaxane Molecular Machine that Combines [c2]Daisy and [2]Rotaxane Arrangements.
    Waelès P; Riss-Yaw B; Coutrot F
    Chemistry; 2016 May; 22(20):6837-45. PubMed ID: 27062072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.