BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 31011783)

  • 1. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.
    Loroch S; Zahedi RP; Sickmann A
    Anal Chem; 2015 Feb; 87(3):1596-604. PubMed ID: 25405705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis.
    Zarei M; Sprenger A; Gretzmeier C; Dengjel J
    J Proteome Res; 2012 Aug; 11(8):4269-76. PubMed ID: 22768876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches.
    Zarei M; Sprenger A; Metzger F; Gretzmeier C; Dengjel J
    J Proteome Res; 2011 Aug; 10(8):3474-83. PubMed ID: 21682340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection.
    Chien KY; Liu HC; Goshe MB
    J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis.
    Zarei M; Sprenger A; Gretzmeier C; Dengjel J
    J Proteome Res; 2013 Dec; 12(12):5989-95. PubMed ID: 24144214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides.
    Cui Y; Yang K; Tabang DN; Huang J; Tang W; Li L
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2491-2501. PubMed ID: 31286442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Global Phosphoproteome Profiling of Jurkat T Cells by HIFU-TiO
    Carrera M; Cañas B; Lopez-Ferrer D
    Anal Chem; 2017 Sep; 89(17):8853-8862. PubMed ID: 28787133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis.
    Zarei M; Sprenger A; Rackiewicz M; Dengjel J
    Nat Protoc; 2016 Jan; 11(1):37-45. PubMed ID: 26633130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of electrostatic repulsion hydrophilic interaction chromatography to the characterization of proteome, glycoproteome, and phosphoproteome using nano LC-MS/MS.
    Hao P; Zhang H; Sze SK
    Methods Mol Biol; 2011; 790():305-18. PubMed ID: 21948424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.
    Loroch S; Schommartz T; Brune W; Zahedi RP; Sickmann A
    Biochim Biophys Acta; 2015 May; 1854(5):460-8. PubMed ID: 25619855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment Strategies in Phosphoproteomics.
    Leitner A
    Methods Mol Biol; 2016; 1355():105-21. PubMed ID: 26584921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary workflow for global phosphoproteome analysis.
    Li QR; Ning ZB; Yang XL; Wu JR; Zeng R
    Electrophoresis; 2012 Nov; 33(22):3291-8. PubMed ID: 23097065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach.
    Hennrich ML; Groenewold V; Kops GJ; Heck AJ; Mohammed S
    Anal Chem; 2011 Sep; 83(18):7137-43. PubMed ID: 21815630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.
    Montoya A; Beltran L; Casado P; Rodríguez-Prados JC; Cutillas PR
    Methods; 2011 Aug; 54(4):370-8. PubMed ID: 21316455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis.
    Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.