These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
599 related articles for article (PubMed ID: 31011786)
1. Combined hydrophilic interaction liquid chromatography-scanning field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry for untargeted metabolomics. Szykuła KM; Meurs J; Turner MA; Creaser CS; Reynolds JC Anal Bioanal Chem; 2019 Sep; 411(24):6309-6317. PubMed ID: 31011786 [TBL] [Abstract][Full Text] [Related]
2. Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry. Arthur KL; Turner MA; Reynolds JC; Creaser CS Anal Chem; 2017 Mar; 89(6):3452-3459. PubMed ID: 28230966 [TBL] [Abstract][Full Text] [Related]
3. Rapid HILIC-Z ion mobility mass spectrometry (RHIMMS) method for untargeted metabolomics of complex biological samples. Pičmanová M; Moses T; Cortada-Garcia J; Barrett G; Florance H; Pandor S; Burgess K Metabolomics; 2022 Feb; 18(3):16. PubMed ID: 35229219 [TBL] [Abstract][Full Text] [Related]
4. Rapid Analysis of Anabolic Steroid Metabolites in Urine by Combining Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography and Mass Spectrometry. Arthur KL; Turner MA; Brailsford AD; Kicman AT; Cowan DA; Reynolds JC; Creaser CS Anal Chem; 2017 Jul; 89(14):7431-7437. PubMed ID: 28613840 [TBL] [Abstract][Full Text] [Related]
5. Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry. Brown LJ; Smith RW; Toutoungi DE; Reynolds JC; Bristow AW; Ray A; Sage A; Wilson ID; Weston DJ; Boyle B; Creaser CS Anal Chem; 2012 May; 84(9):4095-103. PubMed ID: 22455620 [TBL] [Abstract][Full Text] [Related]
6. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). Pfammatter S; Bonneil E; McManus FP; Thibault P J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622 [TBL] [Abstract][Full Text] [Related]
7. Enhanced performance in the determination of ibuprofen 1-β-O-acyl glucuronide in urine by combining high field asymmetric waveform ion mobility spectrometry with liquid chromatography-time-of-flight mass spectrometry. Smith RW; Toutoungi DE; Reynolds JC; Bristow AW; Ray A; Sage A; Wilson ID; Weston DJ; Boyle B; Creaser CS J Chromatogr A; 2013 Feb; 1278():76-81. PubMed ID: 23336944 [TBL] [Abstract][Full Text] [Related]
8. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine. Chen Z; Coy SL; Pannkuk EL; Laiakis EC; Fornace AJ; Vouros P J Am Soc Mass Spectrom; 2018 Aug; 29(8):1650-1664. PubMed ID: 29736597 [TBL] [Abstract][Full Text] [Related]
9. High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots. Rosting C; Yu J; Cooper HJ J Proteome Res; 2018 Jun; 17(6):1997-2004. PubMed ID: 29707944 [TBL] [Abstract][Full Text] [Related]
10. Broad Separation of Isomeric Lipids by High-Resolution Differential Ion Mobility Spectrometry with Tandem Mass Spectrometry. Bowman AP; Abzalimov RR; Shvartsburg AA J Am Soc Mass Spectrom; 2017 Aug; 28(8):1552-1561. PubMed ID: 28462493 [TBL] [Abstract][Full Text] [Related]
11. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Khamis MM; Adamko DJ; El-Aneed A Mass Spectrom Rev; 2017 Mar; 36(2):115-134. PubMed ID: 25881008 [TBL] [Abstract][Full Text] [Related]
12. Optimization of a liquid chromatography ion mobility-mass spectrometry method for untargeted metabolomics using experimental design and multivariate data analysis. Tebani A; Schmitz-Afonso I; Rutledge DN; Gonzalez BJ; Bekri S; Afonso C Anal Chim Acta; 2016 Mar; 913():55-62. PubMed ID: 26944989 [TBL] [Abstract][Full Text] [Related]
13. Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry. Di Poto C; Tian X; Peng X; Heyman HM; Szesny M; Hess S; Cazares LH J Am Soc Mass Spectrom; 2021 Aug; 32(8):2072-2080. PubMed ID: 34107214 [TBL] [Abstract][Full Text] [Related]
14. Application of differential mobility-mass spectrometry for untargeted human plasma metabolomic analysis. Wernisch S; Pennathur S Anal Bioanal Chem; 2019 Sep; 411(24):6297-6308. PubMed ID: 30941479 [TBL] [Abstract][Full Text] [Related]
15. Improving the discovery of secondary metabolite natural products using ion mobility-mass spectrometry. Schrimpe-Rutledge AC; Sherrod SD; McLean JA Curr Opin Chem Biol; 2018 Feb; 42():160-166. PubMed ID: 29287234 [TBL] [Abstract][Full Text] [Related]
16. Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Causon TJ; Si-Hung L; Newton K; Kurulugama RT; Fjeldsted J; Hann S Anal Bioanal Chem; 2019 Sep; 411(24):6265-6274. PubMed ID: 31302708 [TBL] [Abstract][Full Text] [Related]
17. Improved Thyreostatic Drug Detection in Animal Tissues Using Liquid Chromatography-High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Purves RW; Souster K; West M; Huda AM; Fisher CME; Belford MW; Shurmer BO J Agric Food Chem; 2022 Apr; 70(16):4785-4791. PubMed ID: 35060701 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Supramolecular Complexes of 3-Methylxanthine with Field Asymmetric Waveform Ion Mobility Spectrometry Combined with Mass Spectrometry. Arthur KL; Eiceman GA; Reynolds JC; Creaser CS J Am Soc Mass Spectrom; 2016 May; 27(5):800-9. PubMed ID: 26914231 [TBL] [Abstract][Full Text] [Related]
19. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications. Tsai CW; Tipple CA; Yost RA Rapid Commun Mass Spectrom; 2018 Apr; 32(7):552-560. PubMed ID: 29380926 [TBL] [Abstract][Full Text] [Related]
20. A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine. Nye LC; Williams JP; Munjoma NC; Letertre MPM; Coen M; Bouwmeester R; Martens L; Swann JR; Nicholson JK; Plumb RS; McCullagh M; Gethings LA; Lai S; Langridge JI; Vissers JPC; Wilson ID J Chromatogr A; 2019 Sep; 1602():386-396. PubMed ID: 31285057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]