These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31011871)

  • 1. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus.
    Xiao Z; Li N; Wang S; Sun J; Zhang L; Zhang C; Yang H; Zhao H; Yang B; Wei L; Du H; Qu C; Lu K; Li J
    Biochem Genet; 2019 Dec; 57(6):781-800. PubMed ID: 31011871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus.
    Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL
    BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide mining and comparative analysis of fatty acid elongase gene family in Brassica napus and its progenitors.
    Xue Y; Jiang J; Yang X; Jiang H; Du Y; Liu X; Xie R; Chai Y
    Gene; 2020 Jul; 747():144674. PubMed ID: 32304781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus.
    Shen E; Zhu X; Hua S; Chen H; Ye C; Zhou L; Liu Q; Zhu QH; Fan L; Chen X
    BMC Genomics; 2018 Oct; 19(1):745. PubMed ID: 30314449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus.
    Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB
    PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol.
    Aznar-Moreno J; Denolf P; Van Audenhove K; De Bodt S; Engelen S; Fahy D; Wallis JG; Browse J
    J Exp Bot; 2015 Oct; 66(20):6497-506. PubMed ID: 26195728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Transcriptomics Analysis of Brassica napus L. during Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation.
    Liao P; Woodfield HK; Harwood JL; Chye ML; Scofield S
    Plant Cell Physiol; 2019 Dec; 60(12):2812-2825. PubMed ID: 31504915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L.
    Chen K; Yin Y; Liu S; Guo Z; Zhang K; Liang Y; Zhang L; Zhao W; Chao H; Li M
    BMC Plant Biol; 2019 Jul; 19(1):294. PubMed ID: 31272381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus.
    Raboanatahiry N; Chao H; Guo L; Gan J; Xiang J; Yan M; Zhang L; Yu L; Li M
    BMC Genomics; 2017 Oct; 18(1):776. PubMed ID: 29025408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa).
    Vuorinen AL; Kalpio M; Linderborg KM; Kortesniemi M; Lehto K; Niemi J; Yang B; Kallio HP
    Food Chem; 2014 Feb; 145():664-73. PubMed ID: 24128529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide comparative analysis of long-chain acyl-CoA synthetases (LACSs) gene family: A focus on identification, evolution and expression profiling related to lipid synthesis.
    Ayaz A; Saqib S; Huang H; Zaman W; Lü S; Zhao H
    Plant Physiol Biochem; 2021 Apr; 161():1-11. PubMed ID: 33556720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus.
    Yao M; Guan M; Yang Q; Huang L; Xiong X; Jan HU; Voss-Fels KP; Werner CR; He X; Qian W; Snowdon RJ; Guan C; Hua W; Qian L
    Theor Appl Genet; 2021 May; 134(5):1545-1555. PubMed ID: 33677638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization.
    Wang J; Wang X; Geng S; Singh SK; Wang Y; Pattanaik S; Yuan L
    Planta; 2018 Jul; 248(1):171-182. PubMed ID: 29644447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Transcriptomic Analysis of Two
    Wang J; Singh SK; Du C; Li C; Fan J; Pattanaik S; Yuan L
    Front Plant Sci; 2016; 7():1498. PubMed ID: 27746810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content.
    Li RJ; Wang HZ; Mao H; Lu YT; Hua W
    Planta; 2006 Sep; 224(4):952-62. PubMed ID: 16575595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus.
    Wang H; Wang Q; Pak H; Yan T; Chen M; Chen X; Wu D; Jiang L
    BMC Plant Biol; 2021 Jan; 21(1):6. PubMed ID: 33407143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP
    BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of low nighttime temperature promote oil accumulation in Brassica napus L. based on in-depth transcriptome analysis.
    Mi C; Zhang Y; Zhao Y; Lin L
    Physiol Plant; 2024; 176(3):e14372. PubMed ID: 38812077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.