These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31012167)

  • 1. High-Performance Hierarchical Black-Phosphorous-Based Soft Electrochemical Actuators in Bioinspired Applications.
    Wu G; Wu X; Xu Y; Cheng H; Meng J; Yu Q; Shi X; Zhang K; Chen W; Chen S
    Adv Mater; 2019 Jun; 31(25):e1806492. PubMed ID: 31012167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal-Organic Framework Nanowire Array.
    Shi YX; Wu Y; Wang SQ; Zhao YY; Li T; Yang XQ; Zhang T
    J Am Chem Soc; 2021 Mar; 143(10):4017-4023. PubMed ID: 33663217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator.
    Wu G; Hu Y; Liu Y; Zhao J; Chen X; Whoehling V; Plesse C; Nguyen GT; Vidal F; Chen W
    Nat Commun; 2015 Jun; 6():7258. PubMed ID: 26028354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic Semiconductor Nanotubes for Electrochemical Devices.
    Eslamian M; Mirab F; Raghunathan VK; Majd S; Abidian MR
    Adv Funct Mater; 2021 Dec; 31(49):. PubMed ID: 34924917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators.
    Yu F; Ciou JH; Chen S; Poh WC; Chen J; Chen J; Haruethai K; Lv J; Gao D; Lee PS
    Nat Commun; 2022 Jan; 13(1):390. PubMed ID: 35046389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Nanosheets-Based Soft Electro-Chemo-Mechanical Actuators: Recent Advances in Design, Construction, and Applications.
    Zhu X; Hu Y; Wu G; Chen W; Bao N
    ACS Nano; 2021 Jun; 15(6):9273-9298. PubMed ID: 34018737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered and Active Nanochannel Electrode Design for High-Performance Electrochemical Actuator.
    Wu G; Hu Y; Zhao J; Lan T; Wang D; Liu Y; Chen W
    Small; 2016 Sep; 12(36):4986-4992. PubMed ID: 27119424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube and graphene-based bioinspired electrochemical actuators.
    Kong L; Chen W
    Adv Mater; 2014 Feb; 26(7):1025-43. PubMed ID: 24338697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart Bioinspired Actuators: Crawling, Linear, and Bending Motions through a Multilayer Design.
    Barpuzary D; Ham H; Park D; Kim K; Park MJ
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50381-50391. PubMed ID: 34657431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing Performance of a Hybrid MnO
    Wang SQ; Zhang B; Luo YW; Meng X; Wang ZX; Luo XM; Zhang GP
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9281-9291. PubMed ID: 35148053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow-Voltage-Drivable Artificial Muscles Based on a 3D Structure MXene-PEDOT:PSS/AgNWs Electrode.
    Liu L; Wang C; Wu Z; Xing Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18150-18158. PubMed ID: 35416640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Actuators Based on Conductive Polymer Ionogels and Their Electromechanical Modeling.
    Xu J; Hu H; Zhang S; Cheng G; Ding J
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible and Electroactive Ionogel Graphene Composite Actuator.
    Lu C; Chen X
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32024186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance graphdiyne-based electrochemical actuators.
    Lu C; Yang Y; Wang J; Fu R; Zhao X; Zhao L; Ming Y; Hu Y; Lin H; Tao X; Li Y; Chen W
    Nat Commun; 2018 Feb; 9(1):752. PubMed ID: 29467365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Actuators Based on Two-Dimensional Ti
    Pang D; Alhabeb M; Mu X; Dall'Agnese Y; Gogotsi Y; Gao Y
    Nano Lett; 2019 Oct; 19(10):7443-7448. PubMed ID: 31536705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft Actuator with Biomass Porous Electrode: A Strategy for Lowering Voltage and Enhancing Durability.
    Zhang H; Ma S; Xu C; Ma J; Chen Y; Hu Y; Xu H; Lin Z; Liang Y; Ren L; Ren L
    Nano Lett; 2024 Apr; ():. PubMed ID: 38592087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Responsive and High-Strain Electro-Ionic Soft Actuator Based on the 3D-Structure MXene-EGaIn/MXene Bilayer Composite Electrode.
    Chen L; Zhang L; Wu T; Tang C; Song H
    Langmuir; 2024 Aug; 40(32):16889-16899. PubMed ID: 39099098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.