These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31012307)

  • 1. Thermodynamic Hydricity of [FeFe]-Hydrogenases.
    Wiedner ES
    J Am Chem Soc; 2019 May; 141(18):7212-7222. PubMed ID: 31012307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton Transfer Mechanisms in Bimetallic Hydrogenases.
    Tai H; Hirota S; Stripp ST
    Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT characterization of the reaction pathways for terminal- to μ-hydride isomerisation in synthetic models of the [FeFe]-hydrogenase active site.
    Zampella G; Fantucci P; De Gioia L
    Chem Commun (Camb); 2010 Dec; 46(46):8824-6. PubMed ID: 20953495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.
    Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST
    Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor.
    Winkler M; Esselborn J; Happe T
    Biochim Biophys Acta; 2013; 1827(8-9):974-85. PubMed ID: 23507618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the motif of the [FeFe]-hydrogenase active site models: protonation of Fe2(NR)2(CO)6-xLx species.
    Volkers PI; Rauchfuss TB
    J Inorg Biochem; 2007 Nov; 101(11-12):1748-51. PubMed ID: 17606299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle.
    Sommer C; Richers CP; Lubitz W; Rauchfuss TB; Reijerse EJ
    Angew Chem Int Ed Engl; 2018 May; 57(19):5429-5432. PubMed ID: 29577535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory [FeFe] Hydrogenase.
    Chongdar N; Birrell JA; Pawlak K; Sommer C; Reijerse EJ; Rüdiger O; Lubitz W; Ogata H
    J Am Chem Soc; 2018 Jan; 140(3):1057-1068. PubMed ID: 29251926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isocyanide in biochemistry? A theoretical investigation of the electronic effects and energetics of cyanide ligand protonation in [FeFe]-hydrogenases.
    Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L
    Chemistry; 2011 Feb; 17(6):1954-65. PubMed ID: 21274947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase.
    Mulder DW; Guo Y; Ratzloff MW; King PW
    J Am Chem Soc; 2017 Jan; 139(1):83-86. PubMed ID: 27973768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic assembly of the [FeFe] hydrogenase: synthetic mimics in a biological shell.
    Apfel UP; Weigand W
    Chembiochem; 2013 Nov; 14(17):2237-8. PubMed ID: 24115635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-free synthesis and maturation of [FeFe] hydrogenases.
    Boyer ME; Stapleton JA; Kuchenreuther JM; Wang CW; Swartz JR
    Biotechnol Bioeng; 2008 Jan; 99(1):59-67. PubMed ID: 17546685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association.
    Long H; King PW; Ghirardi ML; Kim K
    J Phys Chem A; 2009 Apr; 113(16):4060-7. PubMed ID: 19317477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated thermodynamic analysis of electron bifurcating [FeFe]-hydrogenase to inform anaerobic metabolism and H
    Jay ZJ; Hunt KA; Chou KJ; Schut GJ; Maness PC; Adams MWW; Carlson RP
    Biochim Biophys Acta Bioenerg; 2020 Jan; 1861(1):148087. PubMed ID: 31669490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer.
    Senger M; Eichmann V; Laun K; Duan J; Wittkamp F; Knör G; Apfel UP; Happe T; Winkler M; Heberle J; Stripp ST
    J Am Chem Soc; 2019 Oct; 141(43):17394-17403. PubMed ID: 31580662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase.
    Stripp ST; Mebs S; Haumann M
    Inorg Chem; 2020 Nov; 59(22):16474-16488. PubMed ID: 33147959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
    Rauchfuss TB
    Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal and hybrid hydrogenases are active from archaea.
    Greening C; Cabotaje PR; Valentin Alvarado LE; Leung PM; Land H; Rodrigues-Oliveira T; Ponce-Toledo RI; Senger M; Klamke MA; Milton M; Lappan R; Mullen S; West-Roberts J; Mao J; Song J; Schoelmerich M; Stairs CW; Schleper C; Grinter R; Spang A; Banfield JF; Berggren G
    Cell; 2024 Jun; 187(13):3357-3372.e19. PubMed ID: 38866018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.