These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31012464)

  • 1. Tuning of the surface plasmon resonance of aluminum nanoshell near-infrared regimes.
    Pathak NK; Parthasarathi ; Kumar PS; Sharma RP
    Phys Chem Chem Phys; 2019 May; 21(18):9441-9449. PubMed ID: 31012464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application.
    Firoozi A; Amphawan A; Khordad R; Mohammadi A; Jalali T; Edet CO; Ali N
    Sci Rep; 2023 Jul; 13(1):11325. PubMed ID: 37443203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding light on the growth of gold nanoshells.
    Sauerbeck C; Haderlein M; Schürer B; Braunschweig B; Peukert W; Klupp Taylor RN
    ACS Nano; 2014 Mar; 8(3):3088-96. PubMed ID: 24552660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon near-field resonance characteristics of silver shell nanocylinders arranged in triangular geometry.
    Jacob J; R A; Mathew V
    Appl Opt; 2011 Nov; 50(33):6277-82. PubMed ID: 22108888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures.
    Fernandes J; Kang S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Optical Properties of Ag-Al Nanosphere Heterodimer].
    Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the gold nanoshell growth mechanism: stabilizing and destabilizing effects of PEG-SH molecules.
    Gordel-Wójcik M; Piela K; Kołkowski R
    Phys Chem Chem Phys; 2022 Mar; 24(9):5700-5709. PubMed ID: 35187554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum for plasmonics.
    Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold-silver alloy semi-nanoshell arrays for label-free plasmonic biosensors.
    Russo V; Michieli N; Cesca T; Scian C; Silvestri D; Morpurgo M; Mattei G
    Nanoscale; 2017 Jul; 9(28):10117-10125. PubMed ID: 28695942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double optical limiting in gold nanoshell: tuning from visible to infrared region by shell thickness.
    Zhu J
    Appl Opt; 2008 Nov; 47(31):5848-52. PubMed ID: 19122726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells.
    Mann D; Nascimento-Duplat D; Keul H; Möller M; Verheijen M; Xu M; Urbach HP; Adam AJL; Buskens P
    Plasmonics; 2017; 12(3):929-945. PubMed ID: 28539851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxide mediated spectral shifting in aluminum resonant optical antennas.
    Schwab PM; Moosmann C; Dopf K; Eisler HJ
    Opt Express; 2015 Oct; 23(20):26533-43. PubMed ID: 26480166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance.
    Wang H; Tam F; Grady NK; Halas NJ
    J Phys Chem B; 2005 Oct; 109(39):18218-22. PubMed ID: 16853342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoshell-enabled photonics-based imaging and therapy of cancer.
    Loo C; Lin A; Hirsch L; Lee MH; Barton J; Halas N; West J; Drezek R
    Technol Cancer Res Treat; 2004 Feb; 3(1):33-40. PubMed ID: 14750891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study.
    Xu X
    Lasers Med Sci; 2019 Apr; 34(3):615-628. PubMed ID: 30350124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental research on the label-free detection of protein adsorption using near-infrared light-responsive plasmonic metal nanoshell arrays with controlled nanogap.
    Uchida S; Zettsu N; Endo K; Yamamura K
    Nanoscale Res Lett; 2013 Jun; 8(1):274. PubMed ID: 23758903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.