These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 31012470)

  • 1. Protein conformational alterations induced by the retinal excited state in proton and sodium pumping rhodopsins.
    Ghosh M; Jung KH; Sheves M
    Phys Chem Chem Phys; 2019 May; 21(18):9450-9455. PubMed ID: 31012470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydroxylamine reaction of sensory rhodopsin II: light-induced conformational alterations with C13=C14 nonisomerizable pigment.
    Zadok U; Klare JP; Engelhard M; Sheves M
    Biophys J; 2005 Oct; 89(4):2610-7. PubMed ID: 16085771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State.
    Das I; Pushkarev A; Sheves M
    J Phys Chem B; 2021 Aug; 125(31):8797-8804. PubMed ID: 34342994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments.
    Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M
    Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-isomerizable artificial pigments: implications for the primary light-induced events in bacteriorhodopsin.
    Aharoni A; Hou B; Friedman N; Ottolenghi M; Rousso I; Ruhman S; Sheves M; Ye T; Zhong Q
    Biochemistry (Mosc); 2001 Nov; 66(11):1210-9. PubMed ID: 11743866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriorhodpsin experiences light-induced conformational alterations in nonisomerizable C(13)=C(14) pigments. A study with EPR.
    Aharoni A; Weiner L; Ottolenghi M; Sheves M
    J Biol Chem; 2000 Jul; 275(28):21010-6. PubMed ID: 10801804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced charge redistribution in the retinal chromophore is required for initiating the bacteriorhodopsin photocycle.
    Zadok U; Khatchatouriants A; Lewis A; Ottolenghi M; Sheves M
    J Am Chem Soc; 2002 Oct; 124(40):11844-5. PubMed ID: 12358516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreduction of bacteriorhodopsin Schiff base at low humidity. A study with C13=C14 nonisomerizable artificial pigments.
    Aharoni A; Ottolenghi M; Sheves M
    Photochem Photobiol; 2002 Jun; 75(6):668-74. PubMed ID: 12081330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-induced bleaching of sensory rhodopsin II (phoborhodopsin) from Halobacterium salinarum by hydroxylamine: identification of the responsible intermediates.
    Tamogami J; Kikukawa T; Ikeda Y; Demura M; Nara T; Kamo N
    J Photochem Photobiol B; 2012 Jan; 106():87-94. PubMed ID: 22104601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal-protein interactions in halorhodopsin from Natronomonas pharaonis: binding and retinal thermal isomerization catalysis.
    Maiti TK; Engelhard M; Sheves M
    J Mol Biol; 2009 Dec; 394(3):472-84. PubMed ID: 19766652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin.
    Roy PP; Kato Y; Abe-Yoshizumi R; Pieri E; Ferré N; Kandori H; Buckup T
    Phys Chem Chem Phys; 2018 Dec; 20(48):30159-30173. PubMed ID: 30484447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein.
    Groenhof G; Bouxin-Cademartory M; Hess B; De Visser SP; Berendsen HJ; Olivucci M; Mark AE; Robb MA
    J Am Chem Soc; 2004 Apr; 126(13):4228-33. PubMed ID: 15053611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of protein-bound water molecules in microbial rhodopsins.
    Gerwert K; Freier E; Wolf S
    Biochim Biophys Acta; 2014 May; 1837(5):606-13. PubMed ID: 24055285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The early steps in the photocycle of a photosensor protein sensory rhodopsin I from Salinibacter ruber.
    Sudo Y; Mizuno M; Wei Z; Takeuchi S; Tahara T; Mizutani Y
    J Phys Chem B; 2014 Feb; 118(6):1510-8. PubMed ID: 24447185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
    van Keulen SC; Solano A; Rothlisberger U
    J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin.
    Borin VA; Wiebeler C; Schapiro I
    Faraday Discuss; 2018 Apr; 207(0):137-152. PubMed ID: 29393940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic evidence for the formation of an N intermediate during the photocycle of sensory rhodopsin II (phoborhodopsin) from Natronobacterium pharaonis.
    Tateishi Y; Abe T; Tamogami J; Nakao Y; Kikukawa T; Kamo N; Unno M
    Biochemistry; 2011 Mar; 50(12):2135-43. PubMed ID: 21299224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75.
    Furutani Y; Kawanabe A; Jung KH; Kandori H
    Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of retinal light induced dipole in halorhodopsin structural alteration.
    Dutta S; Hirshfeld A; Sheves M
    FEBS Lett; 2015 Nov; 589(23):3576-80. PubMed ID: 26467279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.