These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31012645)

  • 21. Dynamics of Photoexcited Small Polarons in Transition-Metal Oxides.
    Zhang L; Chu W; Zhao C; Zheng Q; Prezhdo OV; Zhao J
    J Phys Chem Lett; 2021 Mar; 12(9):2191-2198. PubMed ID: 33630612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dynamic interplay between water and oxygen vacancy at the near-surface of ceria.
    Han ZK; Duan X; Li X; Zhang D; Gao Y
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34256364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor.
    Liu H; Wang A; Zhang P; Ma C; Chen C; Liu Z; Zhang YQ; Feng B; Cheng P; Zhao J; Chen L; Wu K
    Nat Commun; 2023 Jun; 14(1):3690. PubMed ID: 37344475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron polarons in the subsurface layer of Mo/W-doped BiVO
    Cen J; Li S; Zheng J; Pan F
    RSC Adv; 2019 Jan; 9(2):819-823. PubMed ID: 35517615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO₂ and TiO₂: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory.
    Patel M; Sanches FF; Mallia G; Harrison NM
    Phys Chem Chem Phys; 2014 Oct; 16(39):21002-15. PubMed ID: 24979063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-Hydrogen-Polaron Coupling at Anatase TiO
    Zhu YN; Teobaldi G; Liu LM
    J Phys Chem Lett; 2020 Jun; 11(11):4317-4325. PubMed ID: 32354210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anticorrelation between surface and subsurface point defects and the impact on the redox chemistry of TiO2(110).
    Yoon Y; Du Y; Garcia JC; Zhu Z; Wang ZT; Petrik NG; Kimmel GA; Dohnalek Z; Henderson MA; Rousseau R; Deskins NA; Lyubinetsky I
    Chemphyschem; 2015 Feb; 16(2):313-21. PubMed ID: 25359161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption and dissociation of NH3 on clean and hydroxylated TiO2 rutile (110) surfaces: a computational study.
    Chang JG; Chen HT; Ju SP; Chang CS; Weng MH
    J Comput Chem; 2011 Apr; 32(6):1101-12. PubMed ID: 21387336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces.
    Huang WF; Raghunath P; Lin MC
    J Comput Chem; 2011 Apr; 32(6):1065-81. PubMed ID: 21387334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces.
    Lira E; Wendt S; Huo P; Hansen JØ; Streber R; Porsgaard S; Wei Y; Bechstein R; Lægsgaard E; Besenbacher F
    J Am Chem Soc; 2011 May; 133(17):6529-32. PubMed ID: 21480608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic and thermodynamic properties of native point defects in V
    Ngamwongwan L; Fongkaew I; Jungthawan S; Hirunsit P; Limpijumnong S; Suthirakun S
    Phys Chem Chem Phys; 2021 May; 23(19):11374-11387. PubMed ID: 33711089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption configurations and energetics of BClx (x=0-3) on TiO2 anatase (101) and rutile (110) surfaces.
    Chang JG; Wang J; Lin MC
    J Phys Chem A; 2007 Jul; 111(29):6746-54. PubMed ID: 17447738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A charge optimized many-body (COMB) potential for titanium and titania.
    Cheng YT; Shan TR; Liang T; Behera RK; Phillpot SR; Sinnott SB
    J Phys Condens Matter; 2014 Aug; 26(31):315007. PubMed ID: 24943265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption of Co(II) on Metal Oxide Surfaces.
    Towle SN; Brown GE; Parks GA
    J Colloid Interface Sci; 1999 Sep; 217(2):299-311. PubMed ID: 10469538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CO2 adsorption on TiO2(110) rutile: insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments.
    Sorescu DC; Lee J; Al-Saidi WA; Jordan KD
    J Chem Phys; 2011 Mar; 134(10):104707. PubMed ID: 21405184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualization of Water-Induced Surface Segregation of Polarons on Rutile TiO
    Yim CM; Chen J; Zhang Y; Shaw BJ; Pang CL; Grinter DC; Bluhm H; Salmeron M; Muryn CA; Michaelides A; Thornton G
    J Phys Chem Lett; 2018 Sep; 9(17):4865-4871. PubMed ID: 30081626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemisorption Can Reverse Defect-Defect Interaction on Heterogeneous Catalyst Surfaces.
    Yu L; Ruzsinszky A; Yan Q
    J Phys Chem Lett; 2019 Dec; 10(23):7311-7317. PubMed ID: 31709799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging of the hydrogen subsurface site in rutile TiO2.
    Enevoldsen GH; Pinto HP; Foster AS; Jensen MC; Hofer WA; Hammer B; Lauritsen JV; Besenbacher F
    Phys Rev Lett; 2009 Apr; 102(13):136103. PubMed ID: 19392373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.