These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31012665)

  • 1. Ejecta, Corolla, and Splashes from Drop Impacts on Viscous Fluids.
    Marcotte F; Michon GJ; Séon T; Josserand C
    Phys Rev Lett; 2019 Jan; 122(1):014501. PubMed ID: 31012665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drop splashing after impact onto immiscible pools of different viscosities.
    Fudge BD; Cimpeanu R; Antkowiak A; Castrejón-Pita JR; Castrejón-Pita AA
    J Colloid Interface Sci; 2023 Jul; 641():585-594. PubMed ID: 36963252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of splashing in high- and low-viscosity liquids.
    Stevens CS; Latka A; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063006. PubMed ID: 25019878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin film formation during splashing of viscous liquids.
    Driscoll MM; Stevens CS; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036302. PubMed ID: 21230166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin-sheet creation and threshold pressures in drop splashing.
    Latka A
    Soft Matter; 2017 Jan; 13(4):740-747. PubMed ID: 28009926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry.
    Bolleddula DA; Berchielli A; Aliseda A
    Adv Colloid Interface Sci; 2010 Sep; 159(2):144-59. PubMed ID: 20638044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep pool water-impacts of viscous oil droplets.
    Jain U; Jalaal M; Lohse D; van der Meer D
    Soft Matter; 2019 Jun; 15(23):4629-4638. PubMed ID: 31111135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.
    Lee JB; Derome D; Dolatabadi A; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1279-88. PubMed ID: 26745364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splash control of drop impacts with geometric targets.
    Juarez G; Gastopoulos T; Zhang Y; Siegel ML; Arratia PE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026319. PubMed ID: 22463329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing.
    Thoraval MJ; Schubert J; Karpitschka S; Chanana M; Boyer F; Sandoval-Naval E; Dijksman JF; Snoeijer JH; Lohse D
    Soft Matter; 2021 May; 17(20):5116-5121. PubMed ID: 33972959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet splashing by a slingshot mechanism.
    Thoroddsen ST; Thoraval MJ; Takehara K; Etoh TG
    Phys Rev Lett; 2011 Jan; 106(3):034501. PubMed ID: 21405277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airflow-Assisted Impact of Drops of Various Viscosities: The Role of Viscous Dissipation, Normal Imposed Pressure, and Shear Flow of Air.
    Singh RK; Mahato LK; Mandal DK
    Langmuir; 2021 Aug; 37(31):9504-9517. PubMed ID: 34319753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spreading-splashing transition of nanofluid droplets on a smooth flat surface.
    Aksoy YT; Eneren P; Koos E; Vetrano MR
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):434-443. PubMed ID: 34411826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid drops impacting superamphiphobic coatings.
    Deng X; Schellenberger F; Papadopoulos P; Vollmer D; Butt HJ
    Langmuir; 2013 Jun; 29(25):7847-56. PubMed ID: 23697383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prompting Splash Impact on Superamphiphobic Surfaces by Imposing a Viscous Part.
    Yu F; Lin S; Yang J; Fan Y; Wang D; Chen L; Deng X
    Adv Sci (Weinh); 2020 Feb; 7(4):1902687. PubMed ID: 32099762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bouncing-to-Merging Transition in Drop Impact on Liquid Film: Role of Liquid Viscosity.
    Tang X; Saha A; Law CK; Sun C
    Langmuir; 2018 Feb; 34(8):2654-2662. PubMed ID: 29359943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Beads and Drops on a Repellent Solid Surface: A Unified Description.
    Arora S; Fromental JM; Mora S; Phou T; Ramos L; Ligoure C
    Phys Rev Lett; 2018 Apr; 120(14):148003. PubMed ID: 29694155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Viscosity on Bouncing Dynamics of Elliptical Footprint Drops on Non-Wettable Ridged Surfaces.
    Yun S
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.