These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31012687)

  • 1. Compressive Failure as a Critical Transition: Experimental Evidence and Mapping onto the Universality Class of Depinning.
    Vu CC; Amitrano D; Plé O; Weiss J
    Phys Rev Lett; 2019 Jan; 122(1):015502. PubMed ID: 31012687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Percolation versus depinning transition: The inherent role of damage hardening during quasibrittle failure.
    Mayya A
    Phys Rev E; 2024 Sep; 110(3-2):035003. PubMed ID: 39425357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (Finite) statistical size effects on compressive strength.
    Weiss J; Girard L; Gimbert F; Amitrano D; Vandembroucq D
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6231-6. PubMed ID: 24733930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical behavior of nonequilibrium depinning transitions for vortices driven by current and vortex density.
    Kaji T; Maegochi S; Ienaga K; Kaneko S; Okuma S
    Sci Rep; 2022 Jan; 12(1):1542. PubMed ID: 35091669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive dataset.
    Vu CC; Weiss J; Plé O; Amitrano D
    Data Brief; 2020 Dec; 33():106477. PubMed ID: 33241093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal fluctuations and extreme statistics of avalanches near the depinning transition.
    LeBlanc M; Angheluta L; Dahmen K; Goldenfeld N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022126. PubMed ID: 23496478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of maximum velocities in avalanches near the depinning transition.
    LeBlanc M; Angheluta L; Dahmen K; Goldenfeld N
    Phys Rev Lett; 2012 Sep; 109(10):105702. PubMed ID: 23005300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A relation to predict the failure of materials and potential application to volcanic eruptions and landslides.
    Hao S; Liu C; Lu C; Elsworth D
    Sci Rep; 2016 Jun; 6():27877. PubMed ID: 27306851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Record statistics of bursts signals the onset of acceleration towards failure.
    Kádár V; Pál G; Kun F
    Sci Rep; 2020 Feb; 10(1):2508. PubMed ID: 32054929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric Damage Avalanche Shape in Quasibrittle Materials and Subavalanche (Aftershock) Clusters.
    Vu CC; Weiss J
    Phys Rev Lett; 2020 Sep; 125(10):105502. PubMed ID: 32955331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Record-breaking events during the compressive failure of porous materials.
    Pál G; Raischel F; Lennartz-Sassinek S; Kun F; Main IG
    Phys Rev E; 2016 Mar; 93(3):033006. PubMed ID: 27078440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depinning with dynamic stress overshoots: a hybrid of critical and pseudohysteretic behavior.
    Schwarz JM; Fisher DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021603. PubMed ID: 12636688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic Interfaces on Disordered Substrates: From Mean-Field Depinning to Yielding.
    Ferrero EE; Jagla EA
    Phys Rev Lett; 2019 Nov; 123(21):218002. PubMed ID: 31809180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Evidence of Accelerated Seismic Release without Critical Failure in Acoustic Emissions of Compressed Nanoporous Materials.
    Baró J; Dahmen KA; Davidsen J; Planes A; Castillo PO; Nataf GF; Salje EKH; Vives E
    Phys Rev Lett; 2018 Jun; 120(24):245501. PubMed ID: 29956947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting failure: acoustic emission of berlinite under compression.
    Nataf GF; Castillo-Villa PO; Sellappan P; Kriven WM; Vives E; Planes A; Salje EK
    J Phys Condens Matter; 2014 Jul; 26(27):275401. PubMed ID: 24919038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep and thermal rounding close to the elastic depinning threshold.
    Purrello VH; Iguain JL; Kolton AB; Jagla EA
    Phys Rev E; 2017 Aug; 96(2-1):022112. PubMed ID: 28950448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criticality in failure under compression: Acoustic emission study of coal and charcoal with different microstructures.
    Xu Y; Borrego AG; Planes A; Ding X; Vives E
    Phys Rev E; 2019 Mar; 99(3-1):033001. PubMed ID: 30999452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crack propagation through disordered materials as a depinning transition: A critical test of the theory.
    Ponson L; Pindra N
    Phys Rev E; 2017 May; 95(5-1):053004. PubMed ID: 28618481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depinning transition of a driven interface in the random-field Ising model around the upper critical dimension.
    Roters L; Lübeck S; Usadel KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026127. PubMed ID: 12241257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depinning transition of a driven interface in the random-field Ising model around the upper critical dimension.
    Roters L; Lübeck S; Usadel KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):069901. PubMed ID: 12613465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.