BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31012804)

  • 21. Bacterial Effectors Induce Oligomerization of Immune Receptor ZAR1 In Vivo.
    Hu M; Qi J; Bi G; Zhou JM
    Mol Plant; 2020 May; 13(5):793-801. PubMed ID: 32194243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Bacterial Effector AvrPto Targets the Regulatory Coreceptor SOBIR1 and Suppresses Defense Signaling Mediated by the Receptor-Like Protein Cf-4.
    Wu J; van der Burgh AM; Bi G; Zhang L; Alfano JR; Martin GB; Joosten MHAJ
    Mol Plant Microbe Interact; 2018 Jan; 31(1):75-85. PubMed ID: 28876174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cleavage of Arabidopsis PBS1 by a bacterial type III effector.
    Shao F; Golstein C; Ade J; Stoutemyer M; Dixon JE; Innes RW
    Science; 2003 Aug; 301(5637):1230-3. PubMed ID: 12947197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dissection of the pseudokinase ZED1 expands effector recognition to the tomato immune receptor ZAR1.
    Diplock N; Baudin M; Xiang D; Liang LY; Dai W; Murphy JM; Lucet IS; Hassan JA; Lewis JD
    Plant Physiol; 2024 May; ():. PubMed ID: 38748589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of Arabidopsis PBS1 and a wheat PBS1 homolog helps understand the mechanism of PBS1 functioning in innate immunity.
    Sun J; Huang G; Fan F; Wang S; Zhang Y; Han Y; Zou Y; Lu D
    Sci Rep; 2017 Jul; 7(1):5487. PubMed ID: 28710392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting virulence function from recognition: cell death suppression in Nicotiana benthamiana by XopQ/HopQ1-family effectors relies on EDS1-dependent immunity.
    Adlung N; Bonas U
    Plant J; 2017 Aug; 91(3):430-442. PubMed ID: 28423458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein.
    El Kasmi F; Chung EH; Anderson RG; Li J; Wan L; Eitas TK; Gao Z; Dangl JL
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7385-E7394. PubMed ID: 28808003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Convergent Evolution of Effector Protease Recognition by
    Carter ME; Helm M; Chapman AVE; Wan E; Restrepo Sierra AM; Innes RW; Bogdanove AJ; Wise RP
    Mol Plant Microbe Interact; 2019 May; 32(5):550-565. PubMed ID: 30480480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae, creates a binding site for host 14-3-3 proteins.
    Giska F; Lichocka M; Piechocki M; Dadlez M; Schmelzer E; Hennig J; Krzymowska M
    Plant Physiol; 2013 Apr; 161(4):2049-61. PubMed ID: 23396834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants.
    Vinatzer BA; Teitzel GM; Lee MW; Jelenska J; Hotton S; Fairfax K; Jenrette J; Greenberg JT
    Mol Microbiol; 2006 Oct; 62(1):26-44. PubMed ID: 16942603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudomonas syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector.
    Hockett KL; Nishimura MT; Karlsrud E; Dougherty K; Baltrus DA
    Mol Plant Microbe Interact; 2014 Sep; 27(9):923-32. PubMed ID: 24835253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion.
    Lee AH; Hurley B; Felsensteiner C; Yea C; Ckurshumova W; Bartetzko V; Wang PW; Quach V; Lewis JD; Liu YC; Börnke F; Angers S; Wilde A; Guttman DS; Desveaux D
    PLoS Pathog; 2012 Feb; 8(2):e1002523. PubMed ID: 22319451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Bacterial Effector AvrB-Induced RIN4 Hyperphosphorylation Is Mediated by a Receptor-Like Cytoplasmic Kinase Complex in Arabidopsis.
    Xu N; Luo X; Li W; Wang Z; Liu J
    Mol Plant Microbe Interact; 2017 Jun; 30(6):502-512. PubMed ID: 28353399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential modulation of plant immune responses by diverse members of the Pseudomonas savastanoi pv. savastanoi HopAF type III effector family.
    Castañeda-Ojeda MP; López-Solanilla E; Ramos C
    Mol Plant Pathol; 2017 Jun; 18(5):625-634. PubMed ID: 27116193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Translocation and functional analysis of Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system effectors reveals two novel effector families of the Pseudomonas syringae complex.
    Matas IM; Castañeda-Ojeda MP; Aragón IM; Antúnez-Lamas M; Murillo J; Rodríguez-Palenzuela P; López-Solanilla E; Ramos C
    Mol Plant Microbe Interact; 2014 May; 27(5):424-36. PubMed ID: 24329173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.
    Ramachandran SR; Yin C; Kud J; Tanaka K; Mahoney AK; Xiao F; Hulbert SH
    Phytopathology; 2017 Jan; 107(1):75-83. PubMed ID: 27503371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts.
    Morgan RL; Zhou H; Lehto E; Nguyen N; Bains A; Wang X; Ma W
    Mol Microbiol; 2010 Apr; 76(2):437-55. PubMed ID: 20233307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.
    Anderson RG; Casady MS; Fee RA; Vaughan MM; Deb D; Fedkenheuer K; Huffaker A; Schmelz EA; Tyler BM; McDowell JM
    Plant J; 2012 Dec; 72(6):882-93. PubMed ID: 22709376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudomonas syringae Effector Avirulence Protein E Localizes to the Host Plasma Membrane and Down-Regulates the Expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 Gene Required for Antibacterial Immunity in Arabidopsis.
    Xin XF; Nomura K; Ding X; Chen X; Wang K; Aung K; Uribe F; Rosa B; Yao J; Chen J; He SY
    Plant Physiol; 2015 Sep; 169(1):793-802. PubMed ID: 26206852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal Monitoring of
    Park E; Lee HY; Woo J; Choi D; Dinesh-Kumar SP
    Plant Cell; 2017 Jul; 29(7):1571-1584. PubMed ID: 28619883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.