These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31012894)

  • 1. Chiral heteronanotubes: arrangement-dominated chiral interface states and conductivities.
    Xu X; Wei Y; Liu B; Li W; Zhang G; Jiang Y; Tian WQ; Liu L
    Nanoscale; 2019 May; 11(18):8699-8705. PubMed ID: 31012894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping engineering of thermoelectric transport in BNC heteronanotubes.
    Medrano Sandonas L; Cuba-Supanta G; Gutierrez R; Landauro CV; Rojas-Tapia J; Cuniberti G
    Phys Chem Chem Phys; 2019 Jan; 21(4):1904-1911. PubMed ID: 30632565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable electronic properties of ultra-thin boron-carbon-nitrogen heteronanotubes for various compositions.
    Wang Y; Huang G; Zhang J; Shao Q
    J Mol Model; 2014 Aug; 20(8):2371. PubMed ID: 25031080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase: First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube.
    Waters K; Pandey R; Karna SP
    ACS Omega; 2017 Jan; 2(1):76-83. PubMed ID: 31457210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the stacking orientation of C and BN stripes in the structure, energetics, and electronic properties of BC2N nanotubes.
    Machado M; Kar T; Piquini P
    Nanotechnology; 2011 May; 22(20):205706. PubMed ID: 21444960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitutional carbon doping of free-standing and Ru-supported BN sheets: a first-principles study.
    Berseneva N; Komsa HP; Vierimaa V; Björkman T; Fan Z; Harju A; Todorović M; Krasheninnikov AV; Nieminen RM
    J Phys Condens Matter; 2017 Oct; 29(41):415301. PubMed ID: 28718771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(47):47LT02. PubMed ID: 27636333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils.
    Gao Y; Ren W; Ma T; Liu Z; Zhang Y; Liu WB; Ma LP; Ma X; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5199-206. PubMed ID: 23663007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connecting effect on the first hyperpolarizability of armchair carbon-boron-nitride heteronanotubes: pattern versus proportion.
    Zhong RL; Xu HL; Su ZM
    Phys Chem Chem Phys; 2016 May; 18(20):13954-9. PubMed ID: 27152376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-like Boron-Carbon-Nitrogen Monolayers.
    Beniwal S; Hooper J; Miller DP; Costa PS; Chen G; Liu SY; Dowben PA; Sykes EC; Zurek E; Enders A
    ACS Nano; 2017 Mar; 11(3):2486-2493. PubMed ID: 28165713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride.
    Gao Y; Zhang X; Jing Y; Hu M
    Nanoscale; 2015 Apr; 7(16):7143-50. PubMed ID: 25811773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical study on the structures and electronic and magnetic properties of new boron nitride composite nanosystems by depositing superhalogen Al
    Shen X; Yu G; Zhang C; Wang T; Huang X; Chen W
    Phys Chem Chem Phys; 2018 Jun; 20(22):15424-15433. PubMed ID: 29796571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron nitride nanotubes and nanosheets.
    Golberg D; Bando Y; Huang Y; Terao T; Mitome M; Tang C; Zhi C
    ACS Nano; 2010 Jun; 4(6):2979-93. PubMed ID: 20462272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band gap opening of graphene by doping small boron nitride domains.
    Fan X; Shen Z; Liu AQ; Kuo JL
    Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Step flow versus mosaic film growth in hexagonal boron nitride.
    Lu J; Yeo PS; Zheng Y; Xu H; Gan CK; Sullivan MB; Castro Neto AH; Loh KP
    J Am Chem Soc; 2013 Feb; 135(6):2368-73. PubMed ID: 23327187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density Functional Theory Study of Aspirin Adsorption on BCN Sheets and their Hydrogen Evolution Reaction Activity: a Comparative Study with Graphene and Hexagonal Boron Nitride.
    Yadav VK; Mir SH; Singh JK
    Chemphyschem; 2019 Mar; 20(5):687-694. PubMed ID: 30623536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric bandgaps and Landau levels in a Bernal-stacked hexagonal boron-nitride bilayer.
    Zhai X; Jin G
    J Phys Condens Matter; 2014 Jan; 26(1):015304. PubMed ID: 24275264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulating to metallic transition of an oxidized boron nitride nanosheet coating by tuning surface oxygen adsorption.
    Guo Y; Guo W
    Nanoscale; 2014 Apr; 6(7):3731-6. PubMed ID: 24569839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications.
    Weng Q; Wang X; Wang X; Bando Y; Golberg D
    Chem Soc Rev; 2016 Jul; 45(14):3989-4012. PubMed ID: 27173728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.