BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31013086)

  • 1. Perturbation of Hydrogen-Bonding Networks over Supported Lipid Bilayers by Poly(allylamine hydrochloride).
    Dalchand N; Doğangün M; Ohno PE; Ma E; Martinson ABF; Geiger FM
    J Phys Chem B; 2019 May; 123(19):4251-4257. PubMed ID: 31013086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatics, Hydrogen Bonding, and Molecular Structure at Polycation and Peptide:Lipid Membrane Interfaces.
    Dalchand N; Cui Q; Geiger FM
    ACS Appl Mater Interfaces; 2020 May; 12(19):21149-21158. PubMed ID: 31889444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol.
    Karathanou K; Bondar AN
    J Membr Biol; 2018 Jun; 251(3):461-473. PubMed ID: 29523937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations.
    Kostritskii AY; Kondinskaia DA; Nesterenko AM; Gurtovenko AA
    Langmuir; 2016 Oct; 32(40):10402-10414. PubMed ID: 27642663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Hydrogen Bonding and Polyanion Composition in the Formation of Lipid Bilayers on Top of Polyelectrolyte Multilayers.
    Diamanti E; Cuellar L; Gregurec D; Moya SE; Donath E
    Langmuir; 2015 Aug; 31(31):8623-32. PubMed ID: 26158307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Origin of the Apparent Charge of Zwitterionic Lipid Layers.
    Dreier LB; Wolde-Kidan A; Bonthuis DJ; Netz RR; Backus EHG; Bonn M
    J Phys Chem Lett; 2019 Oct; 10(20):6355-6359. PubMed ID: 31568720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions.
    Zhao W; Róg T; Gurtovenko AA; Vattulainen I; Karttunen M
    Biophys J; 2007 Feb; 92(4):1114-24. PubMed ID: 17114222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of cationic model peptides (KX)
    Hädicke A; Blume A
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):415-424. PubMed ID: 28034634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt.
    Petrache HI; Tristram-Nagle S; Gawrisch K; Harries D; Parsegian VA; Nagle JF
    Biophys J; 2004 Mar; 86(3):1574-86. PubMed ID: 14990484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study.
    Pasenkiewicz-Gierula M; Takaoka Y; Miyagawa H; Kitamura K; Kusumi A
    Biophys J; 1999 Mar; 76(3):1228-40. PubMed ID: 10049307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Structure at the Lipid Multibilayer Surface: Anionic Versus Cationic Head Group Effects.
    Kundu A; Kwak K; Cho M
    J Phys Chem B; 2016 Jun; 120(22):5002-7. PubMed ID: 27171689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A layer model of ethanol partitioning into lipid membranes.
    Nizza DT; Gawrisch K
    Gen Physiol Biophys; 2009 Jun; 28(2):140-5. PubMed ID: 19592710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform infrared spectroscopic study of the interactions of a strongly antimicrobial but weakly hemolytic analogue of gramicidin S with lipid micelles and lipid bilayer membranes.
    Lewis RN; Kiricsi M; Prenner EJ; Hodges RS; McElhaney RN
    Biochemistry; 2003 Jan; 42(2):440-9. PubMed ID: 12525171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-Specific Direct Translocation of the Cell-Penetrating Peptide NAF-1
    Drexler CI; Cyran JD; Webb LJ
    J Phys Chem B; 2023 Mar; 127(9):2002-2010. PubMed ID: 36827970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-Lipid Interactions Observed with Isotope-Edited Infrared Spectroscopy.
    Valentine ML; Cardenas AE; Elber R; Baiz CR
    Biophys J; 2020 Jun; 118(11):2694-2702. PubMed ID: 32362342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
    Peitzsch RM; Eisenberg M; Sharp KA; McLaughlin S
    Biophys J; 1995 Mar; 68(3):729-38. PubMed ID: 7756540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.