BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 31013254)

  • 21. The bone marrow of myeloma patients is steadily inhabited by a normal-sized pool of functional regulatory T cells irrespectiveof the disease status.
    Foglietta M; Castella B; Mariani S; Coscia M; Godio L; Ferracini R; Ruggeri M; Muccio V; Omedé P; Palumbo A; Boccadoro M; Massaia M
    Haematologica; 2014 Oct; 99(10):1605-10. PubMed ID: 24972771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma.
    Zavidij O; Haradhvala NJ; Mouhieddine TH; Sklavenitis-Pistofidis R; Cai S; Reidy M; Rahmat M; Flaifel A; Ferland B; Su NK; Agius MP; Park J; Manier S; Bustoros M; Huynh D; Capelletti M; Berrios B; Liu CJ; He MX; Braggio E; Fonseca R; Maruvka YE; Guerriero JL; Goldman M; Van Allen EM; McCarroll SA; Azzi J; Getz G; Ghobrial IM
    Nat Cancer; 2020 May; 1(5):493-506. PubMed ID: 33409501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the role of Tregs in the progression of multiple myeloma.
    Lad D; Huang Q; Hoeppli R; Garcia R; Xu L; Levings M; Song K; Broady R
    Leuk Lymphoma; 2019 Sep; 60(9):2134-2142. PubMed ID: 30773086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circulating Ki67 positive lymphocytes in multiple myeloma and benign monoclonal gammopathy.
    Miguel-Garcia A; Matutes E; Tarin F; Garcia-Talavera J; Miguel-Sosa A; Carbonell F; Catovsky D
    J Clin Pathol; 1995 Sep; 48(9):835-9. PubMed ID: 7490317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape.
    de Jong MME; Kellermayer Z; Papazian N; Tahri S; Hofste Op Bruinink D; Hoogenboezem R; Sanders MA; van de Woestijne PC; Bos PK; Khandanpour C; Vermeulen J; Moreau P; van Duin M; Broijl A; Sonneveld P; Cupedo T
    Nat Immunol; 2021 Jun; 22(6):769-780. PubMed ID: 34017122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of a dominantly inherited hyperphosphorylated paraprotein target with sporadic and familial multiple myeloma and monoclonal gammopathy of undetermined significance: a case-control study.
    Grass S; Preuss KD; Ahlgrimm M; Fadle N; Regitz E; Pfoehler C; Murawski N; Pfreundschuh M
    Lancet Oncol; 2009 Oct; 10(10):950-6. PubMed ID: 19767238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bone paradigm challenging the standard model of myeloma oncogenesis.
    Capp JP; Bataille R
    Crit Rev Oncol Hematol; 2022 Apr; 172():103640. PubMed ID: 35183697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of the Bone Microenvironment to Monoclonal Gammopathy of Undetermined Significance Pathogenesis.
    Gámez B; Edwards CM
    Curr Osteoporos Rep; 2018 Dec; 16(6):635-641. PubMed ID: 30229522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. STAT3 is over-activated within CD163
    Andersen MN; Andersen NF; Lauridsen KL; Etzerodt A; Sorensen BS; Abildgaard N; Plesner T; Hokland M; Møller HJ
    Cancer Immunol Immunother; 2022 Jan; 71(1):177-187. PubMed ID: 34061243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone-marrow immunophenotypic analysis allows the identification of high risk of progression and immune condition-related monoclonal gammopathy of undetermined significance.
    Jerez A; Ortuño FJ; Osma Mdel M; Español I; González AD; Roldán V; de Arriba F; Vicente V
    Ann Med; 2009; 41(7):547-58. PubMed ID: 19634064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma.
    Mikulasova A; Wardell CP; Murison A; Boyle EM; Jackson GH; Smetana J; Kufova Z; Pour L; Sandecka V; Almasi M; Vsianska P; Gregora E; Kuglik P; Hajek R; Davies FE; Morgan GJ; Walker BA
    Haematologica; 2017 Sep; 102(9):1617-1625. PubMed ID: 28550183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. T cell repertoire in patients with multiple myeloma and monoclonal gammopathy of undetermined significance: clonal CD8+ T cell expansions are found preferentially in patients with a low tumor burden.
    Halapi E; Werner A; Wahlström J; Osterborg A; Jeddi-Tehrani M; Yi Q; Janson CH; Wigzell H; Grunewald J; Mellstedt H
    Eur J Immunol; 1997 Sep; 27(9):2245-52. PubMed ID: 9341766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance.
    Skrtić A; Korać P; Krišto DR; Ajduković Stojisavljević R; Ivanković D; Dominis M
    Hum Pathol; 2010 Dec; 41(12):1702-10. PubMed ID: 20800871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Severe and long-lasting disruption of T-cell receptor diversity in human myeloma after high-dose chemotherapy and autologous peripheral blood progenitor cell infusion.
    Mariani S; Coscia M; Even J; Peola S; Foglietta M; Boccadoro M; Sbaiz L; Restagno G; Pileri A; Massaia M
    Br J Haematol; 2001 Jun; 113(4):1051-9. PubMed ID: 11442502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Monoclonal gammopathy of undetermined significance and asymptomatic multiple myelom in the year 2014 ].
    Adam Z; Krejčí M; Pour L; Sevčíková E; Křivanová A; Rehák Z; Koukalová R; Cermáková Z; Vaníček J; Sevčíková S
    Vnitr Lek; 2014 Oct; 60(10):861-79. PubMed ID: 25382009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CD200 expression in plasma cells of nonmyeloma immunoproliferative disorders: clinicopathologic features and comparison with plasma cell myeloma.
    Olteanu H; Harrington AM; Kroft SH
    Am J Clin Pathol; 2012 Dec; 138(6):867-76. PubMed ID: 23161721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Citrullination of histone H3 drives IL-6 production by bone marrow mesenchymal stem cells in MGUS and multiple myeloma.
    McNee G; Eales KL; Wei W; Williams DS; Barkhuizen A; Bartlett DB; Essex S; Anandram S; Filer A; Moss PA; Pratt G; Basu S; Davies CC; Tennant DA
    Leukemia; 2017 Feb; 31(2):373-381. PubMed ID: 27400413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-density neutrophils in MGUS and multiple myeloma are dysfunctional and immune-suppressive due to increased STAT3 downstream signaling.
    Romano A; Parrinello NL; Simeon V; Puglisi F; La Cava P; Bellofiore C; Giallongo C; Camiolo G; D'Auria F; Grieco V; Larocca F; Barbato A; Cambria D; La Spina E; Tibullo D; Palumbo GA; Conticello C; Musto P; Di Raimondo F
    Sci Rep; 2020 Feb; 10(1):1983. PubMed ID: 32029833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone marrow B lymphocytes in multiple myeloma and MGUS: Focus on distribution of naïve cells and memory subsets.
    Pojero F; Casuccio A; Giambanco C; Bulati M; Buffa S; Di Bassiano F; Gervasi F; Caruso C; Colonna Romano G
    Leuk Res; 2016 Oct; 49():51-9. PubMed ID: 27552680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing.
    Leone P; Berardi S; Frassanito MA; Ria R; De Re V; Cicco S; Battaglia S; Ditonno P; Dammacco F; Vacca A; Racanelli V
    Blood; 2015 Sep; 126(12):1443-51. PubMed ID: 26185130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.