These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31013361)

  • 41. The effects of distractor set-size on neural tracking of attended speech.
    Hambrook DA; Tata MS
    Brain Lang; 2019 Mar; 190():1-9. PubMed ID: 30616147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Human Neural Alpha Response to Speech is a Proxy of Attentional Control.
    Wöstmann M; Lim SJ; Obleser J
    Cereb Cortex; 2017 Jun; 27(6):3307-3317. PubMed ID: 28334352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain-informed speech separation (BISS) for enhancement of target speaker in multitalker speech perception.
    Ceolini E; Hjortkjær J; Wong DDE; O'Sullivan J; Raghavan VS; Herrero J; Mehta AD; Liu SC; Mesgarani N
    Neuroimage; 2020 Dec; 223():117282. PubMed ID: 32828921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attentional Modulation of Hierarchical Speech Representations in a Multitalker Environment.
    Kiremitçi I; Yilmaz Ö; Çelik E; Shahdloo M; Huth AG; Çukur T
    Cereb Cortex; 2021 Oct; 31(11):4986-5005. PubMed ID: 34115102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. "Paying" attention to audiovisual speech: Do incongruent stimuli incur greater costs?
    Brown VA; Strand JF
    Atten Percept Psychophys; 2019 Aug; 81(6):1743-1756. PubMed ID: 31197661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Effects of Audiovisual Inputs on Solving the Cocktail Party Problem in the Human Brain: An fMRI Study.
    Li Y; Wang F; Chen Y; Cichocki A; Sejnowski T
    Cereb Cortex; 2018 Oct; 28(10):3623-3637. PubMed ID: 29029039
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Attentional gain control of ongoing cortical speech representations in a "cocktail party".
    Kerlin JR; Shahin AJ; Miller LM
    J Neurosci; 2010 Jan; 30(2):620-8. PubMed ID: 20071526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.
    Shahin AJ; Backer KC; Rosenblum LD; Kerlin JR
    J Neurosci; 2018 Feb; 38(7):1835-1849. PubMed ID: 29263241
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Speech-Level-Based Segmented Model to Decode the Dynamic Auditory Attention States in the Competing Speaker Scenes.
    Wang L; Wang Y; Liu Z; Wu EX; Chen F
    Front Neurosci; 2021; 15():760611. PubMed ID: 35221885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural tracking of attended versus ignored speech is differentially affected by hearing loss.
    Petersen EB; Wöstmann M; Obleser J; Lunner T
    J Neurophysiol; 2017 Jan; 117(1):18-27. PubMed ID: 27707813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correlation between audio-visual enhancement of speech in different noise environments and SNR: a combined behavioral and electrophysiological study.
    Liu B; Lin Y; Gao X; Dang J
    Neuroscience; 2013 Sep; 247():145-51. PubMed ID: 23673276
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of informational content of visual speech in an audiovisual cocktail party: Evidence from cortical oscillations in young and old participants.
    Begau A; Klatt LI; Schneider D; Wascher E; Getzmann S
    Eur J Neurosci; 2022 Oct; 56(8):5215-5234. PubMed ID: 36017762
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Musicians at the Cocktail Party: Neural Substrates of Musical Training During Selective Listening in Multispeaker Situations.
    Puschmann S; Baillet S; Zatorre RJ
    Cereb Cortex; 2019 Jul; 29(8):3253-3265. PubMed ID: 30137239
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites.
    Fairhall SL; Macaluso E
    Eur J Neurosci; 2009 Mar; 29(6):1247-57. PubMed ID: 19302160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural decoding of attentional selection in multi-speaker environments without access to clean sources.
    O'Sullivan J; Chen Z; Herrero J; McKhann GM; Sheth SA; Mehta AD; Mesgarani N
    J Neural Eng; 2017 Oct; 14(5):056001. PubMed ID: 28776506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Including Measures of High Gamma Power Can Improve the Decoding of Natural Speech From EEG.
    Synigal SR; Teoh ES; Lalor EC
    Front Hum Neurosci; 2020; 14():130. PubMed ID: 32410969
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural mechanisms for selectively tuning in to the target speaker in a naturalistic noisy situation.
    Dai B; Chen C; Long Y; Zheng L; Zhao H; Bai X; Liu W; Zhang Y; Liu L; Guo T; Ding G; Lu C
    Nat Commun; 2018 Jun; 9(1):2405. PubMed ID: 29921937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling.
    Akram S; Presacco A; Simon JZ; Shamma SA; Babadi B
    Neuroimage; 2016 Jan; 124(Pt A):906-917. PubMed ID: 26436490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fixating the eyes of a speaker provides sufficient visual information to modulate early auditory processing.
    Kaplan E; Jesse A
    Biol Psychol; 2019 Sep; 146():107724. PubMed ID: 31323242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Speech prosody supports speaker selection and auditory stream segregation in a multi-talker situation.
    Kovács P; Tóth B; Honbolygó F; Szalárdy O; Kohári A; Mády K; Magyari L; Winkler I
    Brain Res; 2023 Apr; 1805():148246. PubMed ID: 36657631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.