These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31013425)

  • 21. Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles.
    Staszczak M; Nabavian Kalat M; Golasiński KM; Urbański L; Takeda K; Matsui R; Pieczyska EA
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influences of Crystallinity and Crosslinking Density on the Shape Recovery Force in Poly(ε-Caprolactone)-Based Shape-Memory Polymer Blends.
    Fulati A; Uto K; Ebara M
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.
    Ge Q; Sakhaei AH; Lee H; Dunn CK; Fang NX; Dunn ML
    Sci Rep; 2016 Aug; 6():31110. PubMed ID: 27499417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Material 3D Printed Shape Memory Polymer with Tunable Melting and Glass Transition Temperature Activated by Heat or Light.
    Sachyani Keneth E; Lieberman R; Rednor M; Scalet G; Auricchio F; Magdassi S
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32210051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers.
    Li G; Hong G; Dong D; Song W; Zhang X
    Adv Mater; 2018 Jul; 30(30):e1801754. PubMed ID: 29904953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 4D Printing of a Digital Shape Memory Polymer with Tunable High Performance.
    Zhang Y; Huang L; Song H; Ni C; Wu J; Zhao Q; Xie T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32408-32413. PubMed ID: 31412699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing.
    Zhang B; Li H; Cheng J; Ye H; Sakhaei AH; Yuan C; Rao P; Zhang YF; Chen Z; Wang R; He X; Liu J; Xiao R; Qu S; Ge Q
    Adv Mater; 2021 Jul; 33(27):e2101298. PubMed ID: 33998721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermally and Electrically Triggered Triple-Shape Memory Behavior of Poly(vinyl acetate)/Poly(lactic acid) Due to Graphene-Induced Phase Separation.
    Sabzi M; Babaahmadi M; Rahnama M
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24061-24070. PubMed ID: 28640585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrathin Shape Change Smart Materials.
    Xu W; Kwok KS; Gracias DH
    Acc Chem Res; 2018 Feb; 51(2):436-444. PubMed ID: 29359913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultralow Density, Monolithic WS2, MoS2, and MoS2/Graphene Aerogels.
    Worsley MA; Shin SJ; Merrill MD; Lenhardt J; Nelson AJ; Woo LY; Gash AE; Baumann TF; Orme CA
    ACS Nano; 2015 May; 9(5):4698-705. PubMed ID: 25858296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers.
    Chen L; Zhang Y; Ye H; Duan G; Duan H; Ge Q; Wang Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18120-18127. PubMed ID: 33830721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties-A Comprehensive Review.
    Jamil H; Faizan M; Adeel M; Jesionowski T; Boczkaj G; Balčiūnaitė A
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultralight-Weight Graphene Aerogels with Extremely High Electrical Conductivity.
    Dos Santos-Gómez L; García JR; Montes-Morán MA; Menéndez JA; García-Granda S; Arenillas A
    Small; 2021 Oct; 17(41):e2103407. PubMed ID: 34510733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly stretchable carbon aerogels.
    Guo F; Jiang Y; Xu Z; Xiao Y; Fang B; Liu Y; Gao W; Zhao P; Wang H; Gao C
    Nat Commun; 2018 Feb; 9(1):881. PubMed ID: 29491395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical Microfabrication of Shape-Memory Polymer Systems via Bicomponent Fiber Spinning.
    Tallury SS; Pourdeyhimi B; Pasquinelli MA; Spontak RJ
    Macromol Rapid Commun; 2016 Nov; 37(22):1837-1843. PubMed ID: 27711987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconfigurable 4D printing via mechanically robust covalent adaptable network shape memory polymer.
    Li H; Zhang B; Ye H; Jian B; He X; Cheng J; Sun Z; Wang R; Chen Z; Lin J; Xiao R; Liu Q; Ge Q
    Sci Adv; 2024 May; 10(20):eadl4387. PubMed ID: 38748786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-scale microstructural construction in ultralight graphene aerogels enables super elasticity and unprecedented durability for impact protection materials.
    Hu X; Tang Y; Tan L; Zeng F; Wu X; Yang S
    J Colloid Interface Sci; 2024 Nov; 673():333-345. PubMed ID: 38878368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.
    Chan BQ; Low ZW; Heng SJ; Chan SY; Owh C; Loh XJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10070-87. PubMed ID: 27018814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.