BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 31013615)

  • 1. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis.
    Freire PP; Fernandez GJ; Cury SS; de Moraes D; Oliveira JS; de Oliveira G; Dal-Pai-Silva M; Dos Reis PP; Carvalho RF
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia.
    Narasimhan A; Ghosh S; Stretch C; Greiner R; Bathe OF; Baracos V; Damaraju S
    J Cachexia Sarcopenia Muscle; 2017 Jun; 8(3):405-416. PubMed ID: 28058815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of miRNA and mRNA expression profiles reveals microRNA-regulated networks during muscle wasting in cardiac cachexia.
    Moraes LN; Fernandez GJ; Vechetti-Júnior IJ; Freire PP; Souza RWA; Villacis RAR; Rogatto SR; Reis PP; Dal-Pai-Silva M; Carvalho RF
    Sci Rep; 2017 Aug; 7(1):6998. PubMed ID: 28765595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia.
    Judge SM; Wu CL; Beharry AW; Roberts BM; Ferreira LF; Kandarian SC; Judge AR
    BMC Cancer; 2014 Dec; 14():997. PubMed ID: 25539728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of microRNAs in skeletal muscle associated with lung cancer cachexia.
    van de Worp WRPH; Schols AMWJ; Dingemans AC; Op den Kamp CMH; Degens JHRJ; Kelders MCJM; Coort S; Woodruff HC; Kratassiouk G; Harel-Bellan A; Theys J; van Helvoort A; Langen RCJ
    J Cachexia Sarcopenia Muscle; 2020 Apr; 11(2):452-463. PubMed ID: 31828982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased miR-497-5p Suppresses IL-6 Induced Atrophy in Muscle Cells.
    Freire PP; Cury SS; Lopes LO; Fernandez GJ; Liu J; de Moraes LN; de Oliveira G; Oliveira JS; de Moraes D; Cabral-Marques O; Dal-Pai-Silva M; Hu X; Wang DZ; Carvalho RF
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and functional analysis of a potential key lncRNA involved in fat loss of cancer cachexia.
    Liu H; Zhou T; Wang B; Li L; Ye D; Yu S
    J Cell Biochem; 2018 Feb; 119(2):1679-1688. PubMed ID: 28782835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia.
    Martinelli GB; Olivari D; Re Cecconi AD; Talamini L; Ottoboni L; Lecker SH; Stretch C; Baracos VE; Bathe OF; Resovi A; Giavazzi R; Cervo L; Piccirillo R
    Oncogene; 2016 Dec; 35(48):6212-6222. PubMed ID: 27212031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific miRNAs are associated with human cancer cachexia in an organ-specific manner.
    Krauss T; Heisz S; Honecker J; Prokopchuk O; Martignoni M; Janssen KP; Claussnitzer M; Hauner H; Seeliger C
    J Cachexia Sarcopenia Muscle; 2023 Jun; 14(3):1381-1394. PubMed ID: 37021483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrative transcriptome study reveals Ddit4/Redd1 as a key regulator of cancer cachexia in rodent models.
    Niu M; Li L; Su Z; Wei L; Pu W; Zhao C; Ding Y; Wazir J; Cao W; Song S; Gao Q; Wang H
    Cell Death Dis; 2021 Jun; 12(7):652. PubMed ID: 34175899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells.
    Sjögren RJ; Egan B; Katayama M; Zierath JR; Krook A
    Physiol Genomics; 2015 Mar; 47(3):45-57. PubMed ID: 25547110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.
    Lee DE; Brown JL; Rosa-Caldwell ME; Blackwell TA; Perry RA; Brown LA; Khatri B; Seo D; Bottje WG; Washington TA; Wiggs MP; Kong BW; Greene NP
    Physiol Genomics; 2017 May; 49(5):253-260. PubMed ID: 28341621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the role of inflammation-related microRNAs in cancer cachexia: a study using HPV16-transgenic mice and in silico approaches.
    Santos JMO; Peixoto da Silva S; Bastos MMSM; Oliveira PA; Gil da Costa RM; Medeiros R
    J Physiol Biochem; 2022 May; 78(2):439-455. PubMed ID: 35298788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia.
    Sannicandro AJ; McDonagh B; Goljanek-Whysall K
    Curr Opin Clin Nutr Metab Care; 2020 May; 23(3):157-163. PubMed ID: 32073414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis.
    Mou T; Zhu D; Wei X; Li T; Zheng D; Pu J; Guo Z; Wu Z
    World J Surg Oncol; 2017 Mar; 15(1):63. PubMed ID: 28302149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of key genes and construction of microRNA-mRNA regulatory networks in multiple myeloma by integrated multiple GEO datasets using bioinformatics analysis.
    Gao H; Wang H; Yang W
    Int J Hematol; 2017 Jul; 106(1):99-107. PubMed ID: 28316065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative microRNA-mRNA Analysis of Muscle Tissues in Qianhua Mutton Merino and Small Tail Han Sheep Reveals Key Roles for oar-miR-655-3p and oar-miR-381-5p.
    Sun L; Lu S; Bai M; Xiang L; Li J; Jia C; Jiang H
    DNA Cell Biol; 2019 May; 38(5):423-435. PubMed ID: 30864845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities.
    Sukari A; Muqbil I; Mohammad RM; Philip PA; Azmi AS
    Semin Cancer Biol; 2016 Feb; 36():95-104. PubMed ID: 26804424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-mRNA regulatory networking fine-tunes the porcine muscle fiber type, muscular mitochondrial respiratory and metabolic enzyme activities.
    Liu X; Trakooljul N; Hadlich F; Muráni E; Wimmers K; Ponsuksili S
    BMC Genomics; 2016 Aug; 17():531. PubMed ID: 27485725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis.
    Gu X; Jin B; Qi Z; Yin X
    Sci Rep; 2021 Jun; 11(1):13560. PubMed ID: 34193880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.