BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31013663)

  • 61. The Trichohyalin-Like Protein Scaffoldin Is Expressed in the Multilayered Periderm during Development of Avian Beak and Egg Tooth.
    Mlitz V; Hermann M; Buchberger M; Tschachler E; Eckhart L
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33578693
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quail GHRL and LEAP2 gene cloning, polymorphism detection, phylogenetic analysis, tissue expression profiling and its association analysis with feed intake.
    Shu X; Chen Z; Zheng X; Hua G; Zhuang W; Zhang J; Chen J
    Gene; 2024 Aug; 918():148479. PubMed ID: 38636815
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evolutionary Landscape of
    Underwood A; Rasicci DT; Hinds D; Mitchell JT; Zieba JK; Mills J; Arnold NE; Cook TW; Moustaqil M; Gambin Y; Sierecki E; Fontaine F; Vanderweele S; Das AS; Cvammen W; Sirpilla O; Soehnlen X; Bricker K; Alokaili M; Green M; Heeringa S; Wilstermann AM; Freeland TM; Qutob D; Milsted A; Jauch R; Triche TJ; Krawczyk CM; Bupp CP; Rajasekaran S; Francois M; Prokop JW
    Genes (Basel); 2023 Jan; 14(1):. PubMed ID: 36672963
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sox genes in grass carp (Ctenopharyngodon idella) with their implications for genome duplication and evolution.
    Zhong L; Yu X; Tong J
    Genet Sel Evol; 2006; 38(6):673-87. PubMed ID: 17129566
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton.
    Li W; Zhang D; Zhu G; Mi X; Guo W
    BMC Genomics; 2019 Jul; 20(1):538. PubMed ID: 31262248
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera.
    Cao J; Han X; Zhang T; Yang Y; Huang J; Hu X
    BMC Genomics; 2014 Dec; 15(1):1116. PubMed ID: 25512249
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Association of a single-nucleotide substitution in TYRP1 with roux in Japanese quail (Coturnix japonica).
    Nadeau NJ; Mundy NI; Gourichon D; Minvielle F
    Anim Genet; 2007 Dec; 38(6):609-13. PubMed ID: 18028514
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The SOX family of genes in cancer development: biological relevance and opportunities for therapy.
    Castillo SD; Sanchez-Cespedes M
    Expert Opin Ther Targets; 2012 Sep; 16(9):903-19. PubMed ID: 22834733
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular Evolution and Inheritance Pattern of
    Akinyemi MO; Finucan J; Grytsay A; Osaiyuwu OH; Adegbaju MS; Ogunade IM; Thomas BN; Peters SO; Morenikeji OB
    Genes (Basel); 2022 Oct; 13(10):. PubMed ID: 36292668
    [No Abstract]   [Full Text] [Related]  

  • 70. No backbone but lots of Sox: Invertebrate Sox genes.
    Phochanukul N; Russell S
    Int J Biochem Cell Biol; 2010 Mar; 42(3):453-64. PubMed ID: 19589395
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2.
    Książkiewicz M; Rychel S; Nelson MN; Wyrwa K; Naganowska B; Wolko B
    BMC Genomics; 2016 Oct; 17(1):820. PubMed ID: 27769166
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An Integrative Developmental Genomics and Systems Biology Approach to Identify an In Vivo Sox Trio-Mediated Gene Regulatory Network in Murine Embryos.
    Lee WJ; Chatterjee S; Yap SP; Lim SL; Xing X; Kraus P; Sun W; Hu X; Sivakamasundari V; Chan HY; Kolatkar PR; Prabhakar S; Lufkin T
    Biomed Res Int; 2017; 2017():8932583. PubMed ID: 28630873
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns.
    Fortunato S; Adamski M; Bergum B; Guder C; Jordal S; Leininger S; Zwafink C; Rapp HT; Adamska M
    Evodevo; 2012 Jul; 3(1):14. PubMed ID: 22824100
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The emerging role of SOX transcription factors in pancreatic endocrine cell development and function.
    McDonald E; Krishnamurthy M; Goodyer CG; Wang R
    Stem Cells Dev; 2009 Dec; 18(10):1379-88. PubMed ID: 19725755
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Roles and regulation of SOX transcription factors in skeletogenesis.
    Lefebvre V
    Curr Top Dev Biol; 2019; 133():171-193. PubMed ID: 30902252
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genome-wide analysis of Sox genes in Drosophila melanogaster.
    Crémazy F; Berta P; Girard F
    Mech Dev; 2001 Dec; 109(2):371-5. PubMed ID: 11731252
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Incorporation of ZP1 into perivitelline membrane after in vivo treatment with exogenous ZP1 in Japanese quail (Coturnix japonica).
    Kinoshita M; Mizui K; Ishiguro T; Ohtsuki M; Kansaku N; Ogawa H; Tsukada A; Sato T; Sasanami T
    FEBS J; 2008 Jul; 275(14):3580-9. PubMed ID: 18537820
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio).
    Hett AK; Ludwig A
    Genome; 2005 Apr; 48(2):181-6. PubMed ID: 15838539
    [TBL] [Abstract][Full Text] [Related]  

  • 79. PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes.
    Ohira T; Nakagawa S; Takeshita J; Aburatani H; Kugoh H
    Sci Rep; 2021 Sep; 11(1):18405. PubMed ID: 34526609
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Basic characterization of avian β-defensin genes in the Japanese quail, Coturnix japonica.
    Ishige T; Hara H; Hirano T; Mannen H; Kono T; Hanzawa K
    Anim Sci J; 2016 Mar; 87(3):311-20. PubMed ID: 26338292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.