These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31013724)

  • 1. A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres.
    Chen Y; Shi D; Chen Y; Chen X; Gao J; Zhao N; Wong CP
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31013724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled fabrication of silicon nanowires via nanosphere lithograph and metal assisted chemical etching.
    Sun B; Shi T; Sheng W; Liao G
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5708-14. PubMed ID: 23882822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking the symmetry of nanosphere lithography with anisotropic plasma etching induced by temperature gradients.
    Darvill D; Iarossi M; Abraham Ekeroth RM; Hubarevich A; Huang JA; De Angelis F
    Nanoscale Adv; 2021 Jan; 3(2):359-369. PubMed ID: 36131733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching.
    Yang J; Zhang M; Lan X; Weng X; Shu Q; Wang R; Qiu F; Wang C; Yang Y
    Nanoscale Res Lett; 2018 Jun; 13(1):177. PubMed ID: 29892834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching.
    Yan L; Wang K; Wu J; Ye L
    J Phys Chem B; 2006 Jun; 110(23):11241-6. PubMed ID: 16771391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand Fabrication of Si/SiO
    Cao H; Li X; Zhou B; Chen T; Shi T; Zheng J; Liu G; Wang Y
    Nanoscale Res Lett; 2017 Dec; 12(1):105. PubMed ID: 28209026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning of various silicon structures via polymer lithography and catalytic chemical etching.
    Lee JP; Bang BM; Choi S; Kim T; Park S
    Nanotechnology; 2011 Jul; 22(27):275305. PubMed ID: 21597138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Patterning with SiO
    Tang JSJ; Bader RS; Goerlitzer ESA; Wendisch JF; Bourret GR; Rey M; Vogel N
    ACS Omega; 2018 Sep; 3(9):12089-12098. PubMed ID: 30288467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Patterning of Vertical Silicon Structures Using Polymer Lithography and Wet Chemical Etching.
    Kim HJ; Lee SH; Lee J; Lee ES; Choi JH; Jung JY; Jeong JH; Choi DG
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4522-9. PubMed ID: 26369075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density silicon nanowires prepared via a two-step template method.
    Teng D; Wu L; He W; Ye C
    Langmuir; 2014 Mar; 30(8):2259-65. PubMed ID: 24511908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gold coated polystyrene ring microarray formed by two-step patterning: construction of an advanced microelectrode for voltammetric sensing.
    Ngamaroonchote A; Liangruksa M; Hanlumyuang Y; Wijitwiengrat T; Laocharoensuk R
    Mikrochim Acta; 2019 May; 186(6):349. PubMed ID: 31093739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography.
    Hall AS; Friesen SA; Mallouk TE
    Nano Lett; 2013 Jun; 13(6):2623-7. PubMed ID: 23614608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions.
    Gimenez AV; Kho KW; Keyes TE
    Nanoscale Adv; 2020 Oct; 2(10):4740-4756. PubMed ID: 36132883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Fabrication of Si Nanowires with Nanodots Using Nanosphere Lithography.
    Li W; Wang S; He S; Hu M; Ge P; Wang J; Guo Y
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1537-40. PubMed ID: 27433616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale low cost fabrication of diameter controllable silicon nanowire arrays.
    Sun L; Fan Y; Wang X; Agung Susantyoko R; Zhang Q
    Nanotechnology; 2014 Jun; 25(25):255302. PubMed ID: 24896291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires.
    Balasundaram K; Sadhu JS; Shin JC; Azeredo B; Chanda D; Malik M; Hsu K; Rogers JA; Ferreira P; Sinha S; Li X
    Nanotechnology; 2012 Aug; 23(30):305304. PubMed ID: 22781120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Multi-Diameter Single-Crystal Silicon Nanowires by Successive Wet Chemical Etching.
    Alagoz AS; Cansizoglu H; Karabacak T
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2857-860. PubMed ID: 29668206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays.
    Su S; Lin L; Li Z; Feng J; Zhang Z
    Nanoscale Res Lett; 2013 Oct; 8(1):405. PubMed ID: 24083345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask.
    Shin JC; Zhang C; Li X
    Nanotechnology; 2012 Aug; 23(30):305305. PubMed ID: 22781145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Silicon to Porous Silicon and Silicon Nanowires by Metal-Assisted Chemical Etching: Role of Ag Size and Electron-Scavenging Rate on Morphology Control and Mechanism.
    Rajkumar K; Pandian R; Sankarakumar A; Rajendra Kumar RT
    ACS Omega; 2017 Aug; 2(8):4540-4547. PubMed ID: 31457746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.