These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 31013847)

  • 61. Triggerable RNA nanodevices.
    Halman J; Satterwhite E; Smollett J; Bindewald E; Parlea L; Viard M; Zakrevsky P; Kasprzak WK; Afonin KA; Shapiro BA
    RNA Dis; 2017; 4():. PubMed ID: 34307841
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology.
    Michelotti N; Johnson-Buck A; Manzo AJ; Walter NG
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(2):139-52. PubMed ID: 22131292
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nucleic acid nanostructures for
    Langlois NI; Ma KY; Clark HA
    Appl Phys Rev; 2023 Mar; 10(1):011304. PubMed ID: 36874908
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nucleic acid based molecular devices.
    Krishnan Y; Simmel FC
    Angew Chem Int Ed Engl; 2011 Mar; 50(14):3124-56. PubMed ID: 21432950
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamic Nanostructures from DNA-Coupled Molecules, Polymers, and Nanoparticles.
    Albert SK; Hu X; Park SJ
    Small; 2019 Jun; 15(26):e1900504. PubMed ID: 30985085
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization of PAMAM Dendrimers for the Delivery of Nucleic Acid Nanoparticles.
    Avila YI; Rebolledo L; Andrade-Muñoz M; Afonin KA
    Methods Mol Biol; 2023; 2709():253-259. PubMed ID: 37572286
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors.
    Castillo RR; Baeza A; Vallet-Regí M
    Biomater Sci; 2017 Feb; 5(3):353-377. PubMed ID: 28105473
    [TBL] [Abstract][Full Text] [Related]  

  • 68. RNA Fibers as Optimized Nanoscaffolds for siRNA Coordination and Reduced Immunological Recognition.
    Rackley L; Stewart JM; Salotti J; Krokhotin A; Shah A; Halman JR; Juneja R; Smollett J; Lee L; Roark K; Viard M; Tarannum M; Vivero-Escoto J; Johnson PF; Dobrovolskaia MA; Dokholyan NV; Franco E; Afonin KA
    Adv Funct Mater; 2018 Nov; 28(48):. PubMed ID: 31258458
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Liquid Metal Nanocores Initiated Construction of Smart DNA-Polymer Microgels with Programmable and Regulable Functions and Near-Infrared Light-Driven Locomotion.
    Zhang Y; Wang C; Yin M; Liang H; Gao Q; Hu S; Guo W
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202311678. PubMed ID: 37963813
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A promising RNA nanotechnology in clinical therapeutics: a future perspective narrative review.
    Tolba MM; Jabbar A; Afzal S; Mahmoud M; Zulfiqar F; El-Soudany I; Samir S; Wadan AS; Ellakwa TE; Ellakwa DE
    Future Sci OA; 2023 Sep; 9(8):FSO883. PubMed ID: 37621841
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Advances in Nanoparticle-based Delivery of Next Generation Peptide Nucleic Acids.
    Malik S; Asmara B; Moscato Z; Mukker JK; Bahal R
    Curr Pharm Des; 2018; 24(43):5164-5174. PubMed ID: 30657037
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.
    Bui MN; Brittany Johnson M; Viard M; Satterwhite E; Martins AN; Li Z; Marriott I; Afonin KA; Khisamutdinov EF
    Nanomedicine; 2017 Apr; 13(3):1137-1146. PubMed ID: 28064006
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Editorial: Delivering nucleic acids to immune and non-immune cells.
    Afonin KA; Re F; Boraschi D
    Front Immunol; 2023; 14():1237506. PubMed ID: 37614239
    [No Abstract]   [Full Text] [Related]  

  • 75. Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
    Chang X; Yang Q; Lee J; Zhang F
    Curr Top Med Chem; 2022; 22(8):652-667. PubMed ID: 35319373
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microparticle Depots for Controlled and Sustained Release of Endosomolytic Nanoparticles.
    Garland KM; Sevimli S; Kilchrist KV; Duvall CL; Cook RS; Wilson JT
    Cell Mol Bioeng; 2019 Oct; 12(5):429-442. PubMed ID: 31719925
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications.
    Xu W; He W; Du Z; Zhu L; Huang K; Lu Y; Luo Y
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):6890-6918. PubMed ID: 31729826
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives.
    Mai BT; Fernandes S; Balakrishnan PB; Pellegrino T
    Acc Chem Res; 2018 May; 51(5):999-1013. PubMed ID: 29733199
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Erratum: Hong, E., et al. Toll-Like Receptor-Mediated Recognition of Nucleic Acid Nanoparticles (NANPs) in Human Primary Blood Cells.
    Hong E; Halman JR; Shah A; Cedrone E; Truong N; Afonin KA; Dobrovolskaia MA
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31731534
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.