These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31013939)

  • 1. Multichannel Inductive Sensor Based on Phase Division Multiplexing for Wear Debris Detection.
    Wu S; Liu Z; Yuan H; Yu K; Gao Y; Liu L; Pan X
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31013939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Inductive Debris Sensor Based on Dual-Excitation Coils and Dual-Sensing Coils for Online Debris Monitoring.
    Wu X; Zhang Y; Li N; Qian Z; Liu D; Qian Z; Zhang C
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Sensitivity of a Micro Inductive Sensor for Wear Debris Detection with Magnetic Powder Surrounded.
    Liu L; Chen L; Wang S; Yin Y; Liu D; Wu S; Liu Z; Pan X
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31266180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors.
    Zeng L; Zhang H; Wang Q; Zhang X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Investigation of Frequency Characteristics of a Novel Inductive Debris Sensor.
    Wu X; Liu H; Qian Z; Qian Z; Liu D; Li K; Wang G
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Impedance Micro-Sensor for Metal Debris Monitoring of Hydraulic Oil.
    Zhang H; Shi H; Li W; Ma L; Zhao X; Xu Z; Wang C; Xie Y; Zhang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on the Influence of Coil LC Parallel Resonance on Detection Effect of Inductive Wear Debris Sensor.
    Huang H; He S; Xie X; Feng W; Zhen H
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An online debris sensor system with vibration resistance for lubrication analysis.
    Ding Y; Wang Y; Xiang J
    Rev Sci Instrum; 2016 Feb; 87(2):025109. PubMed ID: 26931893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New In Situ Coaxial Capacitive Sensor Network for Debris Monitoring of Lubricating Oil.
    Wang Y; Lin T; Wu D; Zhu L; Qing X; Xue W
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on High Sensitivity Oil Debris Detection Sensor Using High Magnetic Permeability Material and Coil Mutual Inductance.
    Wang C; Bai C; Yang Z; Zhang H; Li W; Wang X; Zheng Y; Ilerioluwa L; Sun Y
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Analysis for Appropriate Positioning of Ferrous Wear Debris Sensors with Permanent Magnet in Gearbox Systems.
    Hong SH
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method for Detecting Ferromagnetic Wear Debris with High Flow Velocity.
    Wang F; Liu Z; Ren X; Wu S; Meng M; Wang Y; Pan X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Detection Ability of Inductive Micro-Sensor for Non-Ferromagnetic Wear Debris.
    Wang M; Shi H; Zhang H; Huo D; Xie Y; Su J
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Position on the Wear Debris Detection with Planar Inductor.
    Yin Y; Liu Z; Zheng J; Chen L; Wu S; Wang S; Yan Z; Pan X
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31739486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Permanent Magnet Ferromagnetic Wear Debris Sensor Based on Axisymmetric High-Gradient Magnetic Field.
    Fan B; Liu Y; Zhang P; Wang L; Zhang C; Wang J
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inductive Magnetic Nanoparticle Sensor based on Microfluidic Chip Oil Detection Technology.
    Bai C; Zhang H; Zeng L; Zhao X; Ma L
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32050692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the wear particle monitoring capability of oil debris sensors using a maximal overlap discrete wavelet transform with optimal decomposition depth.
    Li C; Peng J; Liang M
    Sensors (Basel); 2014 Mar; 14(4):6207-28. PubMed ID: 24686730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inductive sensor for real-time measurement of plantar normal and shear forces distribution.
    Du L; Zhu X; Zhe J
    IEEE Trans Biomed Eng; 2015 May; 62(5):1316-23. PubMed ID: 25546856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyper-Heuristic Capacitance Array Method for Multi-Metal Wear Debris Detection.
    Sun Y; Jia L; Zeng Z
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature Extraction of Lubricating Oil Debris Signal Based on Segmentation Entropy with an Adaptive Threshold.
    Yang B; Liu W; Lu S; Luo J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.