These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 31013973)
1. Hydrometallurgical Process for Tantalum Recovery from Epoxy-Coated Solid Electrolyte Tantalum Capacitors. Chen WS; Ho HJ; Lin KY Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013973 [TBL] [Abstract][Full Text] [Related]
2. Recovery of Tantalum and Manganese from Epoxy-Coated Solid Electrolyte Tantalum Capacitors through Selective Leaching and Chlorination Processes. Chen WS; Hsiao CY; Lee CH Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057373 [TBL] [Abstract][Full Text] [Related]
3. Sustainable valorization of semiconductor industry tantalum scrap using non-hazardous HF substitute lixiviant. Swain B; Lee J; Woo Gu B; Lee CG; Yoon JH Waste Manag; 2022 May; 144():294-302. PubMed ID: 35427901 [TBL] [Abstract][Full Text] [Related]
4. Hybrid leaching of tantalum and other valuable metals from tantalum capacitor waste. Sikander A; Kelly S; Kuchta K; Sievers A; Willner T; Hursthouse AS Environ Sci Pollut Res Int; 2023 May; 30(21):59621-59631. PubMed ID: 37012563 [TBL] [Abstract][Full Text] [Related]
5. Hydrometallurgical recycling of surface-coated metals from automobile-discarded ABS plastic waste. Kim TG; Srivastava RR; Jun M; Kim MS; Lee JC Waste Manag; 2018 Oct; 80():414-422. PubMed ID: 30455024 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment. Fujita T; Ono H; Dodbiba G; Yamaguchi K Waste Manag; 2014 Jul; 34(7):1264-73. PubMed ID: 24703485 [TBL] [Abstract][Full Text] [Related]
7. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review. Zheng K; Benedetti MF; van Hullebusch ED J Environ Manage; 2023 Dec; 347():119043. PubMed ID: 37776794 [TBL] [Abstract][Full Text] [Related]
8. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Chen X; Zhou T Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255 [TBL] [Abstract][Full Text] [Related]
9. Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment: Optimum conditions determination and kinetic analysis. Cao Y; Li F; Li G; Huang J; Zhu H; He W Waste Manag; 2020 Feb; 102():635-644. PubMed ID: 31785523 [TBL] [Abstract][Full Text] [Related]
10. Indium recovery from spent liquid crystal displays by using hydrometallurgical methods and microwave pyrolysis. Huang YF; Wang SY; Lo SL Chemosphere; 2021 Oct; 280():130905. PubMed ID: 34162103 [TBL] [Abstract][Full Text] [Related]
11. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors. Chen Z; Niu B; Zhang L; Xu Z J Hazard Mater; 2018 Jan; 342():192-200. PubMed ID: 28829984 [TBL] [Abstract][Full Text] [Related]
12. Chemical and Microbial Leaching of Valuable Metals from PCBs and Tantalum Capacitors of Spent Mobile Phones. Sikander A; Kelly S; Kuchta K; Sievers A; Willner T; Hursthouse AS Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011640 [TBL] [Abstract][Full Text] [Related]
13. Application of pyrolysis to recycling organics from waste tantalum capacitors. Niu B; Chen Z; Xu Z J Hazard Mater; 2017 Aug; 335():39-46. PubMed ID: 28414947 [TBL] [Abstract][Full Text] [Related]
14. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors. Prabaharan G; Barik SP; Kumar B Waste Manag; 2016 Jun; 52():302-8. PubMed ID: 27084106 [TBL] [Abstract][Full Text] [Related]
15. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. Tanong K; Coudert L; Mercier G; Blais JF J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877 [TBL] [Abstract][Full Text] [Related]
16. Development of complete hydrometallurgical processes for gold recovery from ICs and CPUs using ionic liquids. Gómez M; Grimes S; Fowler G J Environ Manage; 2024 Jun; 362():121306. PubMed ID: 38833918 [TBL] [Abstract][Full Text] [Related]
17. Chromium recovery from tannery sludge and its ash, based on hydrometallurgical methods. Pantazopoulou E; Zouboulis A Waste Manag Res; 2020 Jan; 38(1):19-26. PubMed ID: 31405339 [TBL] [Abstract][Full Text] [Related]
18. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation. Lee JY; Rao SV; Kumar BN; Kang DJ; Reddy BR J Hazard Mater; 2010 Apr; 176(1-3):1122-5. PubMed ID: 20018448 [TBL] [Abstract][Full Text] [Related]
19. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Fan B; Chen X; Zhou T; Zhang J; Xu B Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340 [TBL] [Abstract][Full Text] [Related]
20. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products. Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]