BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 31013974)

  • 1. Broadband Perfect Optical Absorption by Coupled Semiconductor Resonator-Based All-Dielectric Metasurface.
    Weng Z; Guo Y
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography.
    Chen C; Liu Y; Jiang ZY; Shen C; Zhang Y; Zhong F; Chen L; Zhu S; Liu H
    Opt Express; 2022 Apr; 30(8):13391-13403. PubMed ID: 35472952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface.
    Zhong J; Zhao H; Yang H; Wang Y; Yin J; Wen J
    Sci Rep; 2019 Feb; 9(1):1181. PubMed ID: 30718565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses.
    Wu K; Huang Y; Wanghuang T; Chen W; Wen G
    Appl Opt; 2015 Jan; 54(2):299-305. PubMed ID: 25967629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband linear polarization converter based on anisotropic metasurface.
    Xu J; Li R; Wang S; Han T
    Opt Express; 2018 Oct; 26(20):26235-26241. PubMed ID: 30469714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadening Bandwidths of Few-Layer Absorbers by Superimposing Two High-Loss Resonators.
    Wu D; Chen J
    Nanoscale Res Lett; 2021 Feb; 16(1):26. PubMed ID: 33566218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental realization of a terahertz all-dielectric metasurface absorber.
    Liu X; Fan K; Shadrivov IV; Padilla WJ
    Opt Express; 2017 Jan; 25(1):191-201. PubMed ID: 28085806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization.
    Li Z; Stan L; Czaplewski DA; Yang X; Gao J
    Opt Lett; 2019 Jan; 44(1):114-117. PubMed ID: 30645556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface.
    Chen S; Chen Z; Liu J; Cheng J; Zhou Y; Xiao L; Chen K
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable narrowband shortwave-infrared absorber made of a nanodisk-based metasurface and a phase-change material Ge
    Zhang S; Zhou K; Cheng Q; Lu L; Li B; Song J; Luo Z
    Appl Opt; 2020 Jul; 59(21):6309-6314. PubMed ID: 32749294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.
    Li Z; Stan L; Czaplewski DA; Yang X; Gao J
    Opt Express; 2018 Mar; 26(5):5616-5631. PubMed ID: 29529764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-broadband infrared metasurface absorber.
    Guo W; Liu Y; Han T
    Opt Express; 2016 Sep; 24(18):20586-92. PubMed ID: 27607662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoplasmonic Controlled Optical Absorber Based on a Liquid Crystal Metasurface.
    Petronella F; Madeleine T; De Mei V; Zaccagnini F; Striccoli M; D'Alessandro G; Rumi M; Slagle J; Kaczmarek M; De Sio L
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49468-49477. PubMed ID: 37816211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.
    Romero-García V; Theocharis G; Richoux O; Merkel A; Tournat V; Pagneux V
    Sci Rep; 2016 Jan; 6():19519. PubMed ID: 26781863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime.
    Wu S; Gu Y; Ye Y; Ye H; Chen L
    Opt Express; 2018 Aug; 26(17):21479-21489. PubMed ID: 30130854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chalcogenide-based, all-dielectric, ultrathin metamaterials with perfect, incidence-angle sensitive, mid-infrared absorption: inverse design, analysis, and applications.
    Avrahamy R; Milgrom B; Zohar M; Auslender M
    Nanoscale; 2021 Jul; 13(26):11455-11469. PubMed ID: 34160520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.