BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31014068)

  • 1. Ratiometric Imaging of Cysteine Level Changes in Endoplasmic Reticulum during H
    Dong B; Lu Y; Zhang N; Song W; Lin W
    Anal Chem; 2019 May; 91(9):5513-5516. PubMed ID: 31014068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Endoplasmic Reticulum (ER)-Targeting Fluorescent Probe for the Imaging of Cysteine in Living Cells.
    Zhou L; Li Y; Zhou A; Zhang G; Cheng ZQ; Ge YX; Liu SK; Azevedo RB; Zhang J; Jiang S; Jiang CS
    J Fluoresc; 2020 Dec; 30(6):1357-1364. PubMed ID: 32870455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endoplasmic Reticulum-Directed Ratiometric Fluorescent Probe for Quantitive Detection of Basal H
    Gao C; Tian Y; Zhang R; Jing J; Zhang X
    Anal Chem; 2017 Dec; 89(23):12945-12950. PubMed ID: 29129057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An endoplasmic reticulum-targeting fluorescent probe for discriminatory detection of Cys, Hcy and GSH in living cells.
    Yue X; Chen J; Chen W; Wang B; Zhang H; Song X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119347. PubMed ID: 33422873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring cysteine level changes under LPS or H
    Jing X; Yu F; Lin W
    Anal Chim Acta; 2021 Aug; 1174():338738. PubMed ID: 34247736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the redox status in endoplasmic reticulum by a selenium fluorescence probe.
    Zang S; Kong X; Cui J; Su S; Shu W; Jing J; Zhang X
    J Mater Chem B; 2020 Apr; 8(13):2660-2665. PubMed ID: 32140692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultrasensitive ratiometric fluorescent probe based on the ICT-PET-FRET mechanism for the quantitative measurement of pH values in the endoplasmic reticulum (ER).
    Dong B; Song W; Lu Y; Kong X; Mehmood AH; Lin W
    Chem Commun (Camb); 2019 Sep; 55(72):10776-10779. PubMed ID: 31432809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A red-emitting styrylnaphthalimide-based fluorescent probe providing a ratiometric signal change for the precise and quantitative detection of H
    Lee J; Yoon SA; Chun J; Kang C; Lee MH
    Anal Chim Acta; 2019 Nov; 1080():153-161. PubMed ID: 31409465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel AIRE-based fluorescent ratiometric probe with endoplasmic reticulum-targeting ability for detection of hypochlorite and bioimaging.
    Yan JL; Zhang L; Wu WN; Wang Y; Xu ZH
    Bioorg Chem; 2023 Feb; 131():106319. PubMed ID: 36586300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Two-Photon Fluorescent Probe for Imaging of Nitric Oxide during Endoplasmic Reticulum Stress.
    Li SJ; Zhou DY; Li Y; Liu HW; Wu P; Ou-Yang J; Jiang WL; Li CY
    ACS Sens; 2018 Nov; 3(11):2311-2319. PubMed ID: 30375854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time imaging of intracellular cysteine level fluctuations during Cu
    Zhao J; Liu Y; Huo F; Chao J; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121060. PubMed ID: 35228086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H
    Melo EP; Lopes C; Gollwitzer P; Lortz S; Lenzen S; Mehmeti I; Kaminski CF; Ron D; Avezov E
    BMC Biol; 2017 Mar; 15(1):24. PubMed ID: 28347335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new endoplasmic reticulum-targeted two-photon fluorescent probe for imaging of superoxide anion in diabetic mice.
    Xiao H; Liu X; Wu C; Wu Y; Li P; Guo X; Tang B
    Biosens Bioelectron; 2017 May; 91():449-455. PubMed ID: 28064130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive stress imaging in the endoplasmic reticulum by using living cells and zebrafish.
    Niu H; Zhang Y; Zhao F; Mo S; Cao W; Ye Y; Zhao Y
    Chem Commun (Camb); 2019 Aug; 55(65):9629-9632. PubMed ID: 31353368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An endoplasmic reticulum-specific ratiometric fluorescent probe for imaging esterase in living cells.
    Guo B; Shen T; Liu Y; Jing J; Shao C; Zhang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122389. PubMed ID: 36689909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A redox reversible endoplasmic reticulum-targeted fluorescent probe for revealing the redox status of living cells.
    Tang YJ; He S; Guo XF; Wang H
    Analyst; 2021 Dec; 146(24):7740-7747. PubMed ID: 34842257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeostasis of the ER redox state subsequent to proteasome inhibition.
    Oku Y; Kariya M; Fujimura T; Hoseki J; Sakai Y
    Sci Rep; 2021 Apr; 11(1):8655. PubMed ID: 33883613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Aromatic Substitution-Rearrangement-Based Ratiometric Fluorescent Cysteine-Specific Probe and Its Application of Real-Time Imaging under Oxidative Stress in Living Zebrafish.
    He L; Yang X; Xu K; Lin W
    Anal Chem; 2017 Sep; 89(17):9567-9573. PubMed ID: 28791863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells.
    Li X; Ma H; Qian J; Cao T; Teng Z; Iqbal K; Qin W; Guo H
    Talanta; 2019 Mar; 194():717-722. PubMed ID: 30609596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe.
    Wang H; Zhang P; Tian Y; Zhang Y; Yang H; Chen S; Zeng R; Long Y; Chen J
    Anal Bioanal Chem; 2018 Jul; 410(18):4379-4386. PubMed ID: 29707752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.