These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 31014935)
1. Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Srivastava N; Srivastava M; Malhotra BD; Gupta VK; Ramteke PW; Silva RN; Shukla P; Dubey KK; Mishra PK Biotechnol Adv; 2019 Nov; 37(6):107384. PubMed ID: 31014935 [TBL] [Abstract][Full Text] [Related]
2. Advances in nanomaterials induced biohydrogen production using waste biomass. Srivastava N; Srivastava M; Mishra PK; Kausar MA; Saeed M; Gupta VK; Singh R; Ramteke PW Bioresour Technol; 2020 Jul; 307():123094. PubMed ID: 32249026 [TBL] [Abstract][Full Text] [Related]
3. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808 [TBL] [Abstract][Full Text] [Related]
5. Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach. Srivastava N; Srivastava M; Abd Allah EF; Singh R; Hashem A; Gupta VK Chemosphere; 2021 May; 271():129537. PubMed ID: 33450424 [TBL] [Abstract][Full Text] [Related]
6. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Ong ES; Rabbani AH; Habashy MM; Abdeldayem OM; Al-Sakkari EG; Rene ER Environ Pollut; 2021 Dec; 291():118160. PubMed ID: 34562690 [TBL] [Abstract][Full Text] [Related]
7. Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1. Song W; Ding L; Liu M; Cheng J; Zhou J; Li YY Sci Total Environ; 2020 May; 716():134695. PubMed ID: 31837880 [TBL] [Abstract][Full Text] [Related]
8. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. Chandran EM; Mohan E Environ Sci Pollut Res Int; 2023 Oct; 30(46):102129-102157. PubMed ID: 37684507 [TBL] [Abstract][Full Text] [Related]
9. Biohydrogen production from microalgae for environmental sustainability. Li S; Li F; Zhu X; Liao Q; Chang JS; Ho SH Chemosphere; 2022 Mar; 291(Pt 1):132717. PubMed ID: 34757051 [TBL] [Abstract][Full Text] [Related]
10. Innovative strategies in algal biomass pretreatment for biohydrogen production. Priya A; Naseem S; Pandey D; Bhowmick A; Attrah M; Dutta K; Rene ER; Suman SK; Daverey A Bioresour Technol; 2023 Feb; 369():128446. PubMed ID: 36473587 [TBL] [Abstract][Full Text] [Related]
11. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Ren NQ; Zhao L; Chen C; Guo WQ; Cao GL Bioresour Technol; 2016 Sep; 215():92-99. PubMed ID: 27090403 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710 [TBL] [Abstract][Full Text] [Related]
13. Semidry acid hydrolysis of cellulose sustained by autoclaving for production of reducing sugars for bacterial biohydrogen generation from various cellulose feedstock. Morsy FM; Elbadry M; Elbahloul Y PeerJ; 2021; 9():e11244. PubMed ID: 33976974 [TBL] [Abstract][Full Text] [Related]
14. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981 [TBL] [Abstract][Full Text] [Related]
15. Green hydrogen production through consolidated bioprocessing of lignocellulosic biomass using nanobiotechnology approach. Singhvi M; Kim BS Bioresour Technol; 2022 Dec; 365():128108. PubMed ID: 36270388 [TBL] [Abstract][Full Text] [Related]
16. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy. Yang E; Chon K; Kim KY; Le GTH; Nguyen HY; Le TTQ; Nguyen HTT; Jae MR; Ahmad I; Oh SE; Chae KJ Bioresour Technol; 2023 Feb; 369():128380. PubMed ID: 36427768 [TBL] [Abstract][Full Text] [Related]
17. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Si BC; Li JM; Zhu ZB; Zhang YH; Lu JW; Shen RX; Zhang C; Xing XH; Liu Z Biotechnol Biofuels; 2016; 9():254. PubMed ID: 27895708 [TBL] [Abstract][Full Text] [Related]
18. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Monlau F; Sambusiti C; Barakat A; Quéméneur M; Trably E; Steyer JP; Carrère H Biotechnol Adv; 2014; 32(5):934-51. PubMed ID: 24780154 [TBL] [Abstract][Full Text] [Related]
19. Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation. Rambabu K; Bharath G; Thanigaivelan A; Das DB; Show PL; Banat F Bioresour Technol; 2021 Jan; 319():124243. PubMed ID: 33254466 [TBL] [Abstract][Full Text] [Related]
20. A bibliometric analysis of the role of nanotechnology in dark fermentative biohydrogen production. Jannat FT; Aftab K; Kalsoom U; Baig MA Environ Sci Pollut Res Int; 2024 Apr; 31(17):24815-24835. PubMed ID: 38530525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]