These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 31015019)
1. The suitability of liposomes for the delivery of hydrophobic drugs - A case study with curcumin. Kolter M; Wittmann M; Köll-Weber M; Süss R Eur J Pharm Biopharm; 2019 Jul; 140():20-28. PubMed ID: 31015019 [TBL] [Abstract][Full Text] [Related]
2. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Doktorovova S; Souto EB; Silva AM Pharm Dev Technol; 2018 Jan; 23(1):96-105. PubMed ID: 28949267 [TBL] [Abstract][Full Text] [Related]
3. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Li H; Zhang N; Hao Y; Wang Y; Jia S; Zhang H; Zhang Y; Zhang Z Drug Deliv; 2014 Aug; 21(5):379-87. PubMed ID: 24160816 [TBL] [Abstract][Full Text] [Related]
4. Liposomal curcumin and its application in cancer. Feng T; Wei Y; Lee RJ; Zhao L Int J Nanomedicine; 2017; 12():6027-6044. PubMed ID: 28860764 [TBL] [Abstract][Full Text] [Related]
5. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Shukla M; Jaiswal S; Sharma A; Srivastava PK; Arya A; Dwivedi AK; Lal J Drug Dev Ind Pharm; 2017 May; 43(5):847-861. PubMed ID: 27648633 [TBL] [Abstract][Full Text] [Related]
6. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Hamano N; Böttger R; Lee SE; Yang Y; Kulkarni JA; Ip S; Cullis PR; Li SD Mol Pharm; 2019 Sep; 16(9):3957-3967. PubMed ID: 31381352 [TBL] [Abstract][Full Text] [Related]
7. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Baek JS; Cho CW Eur J Pharm Biopharm; 2017 Aug; 117():132-140. PubMed ID: 28412471 [TBL] [Abstract][Full Text] [Related]
8. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. Lübtow MM; Nelke LC; Seifert J; Kühnemundt J; Sahay G; Dandekar G; Nietzer SL; Luxenhofer R J Control Release; 2019 Jun; 303():162-180. PubMed ID: 30981815 [TBL] [Abstract][Full Text] [Related]
9. Novel dipeptide nanoparticles for effective curcumin delivery. Alam S; Panda JJ; Chauhan VS Int J Nanomedicine; 2012; 7():4207-22. PubMed ID: 22915849 [TBL] [Abstract][Full Text] [Related]
10. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Peng S; Zou L; Liu W; Li Z; Liu W; Hu X; Chen X; Liu C Carbohydr Polym; 2017 Jan; 156():322-332. PubMed ID: 27842829 [TBL] [Abstract][Full Text] [Related]
12. Enhancing Curcumin's therapeutic potential in cancer treatment through ultrasound mediated liposomal delivery. Radha R; Paul V; Anjum S; Bouakaz A; Pitt WG; Husseini GA Sci Rep; 2024 May; 14(1):10499. PubMed ID: 38714740 [TBL] [Abstract][Full Text] [Related]
13. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436 [TBL] [Abstract][Full Text] [Related]
14. Oral bioavailability of curcumin: problems and advancements. Liu W; Zhai Y; Heng X; Che FY; Chen W; Sun D; Zhai G J Drug Target; 2016 Sep; 24(8):694-702. PubMed ID: 26942997 [TBL] [Abstract][Full Text] [Related]
15. Chitosan-based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects. Saheb M; Fereydouni N; Nemati S; Barreto GE; Johnston TP; Sahebkar A J Cell Physiol; 2019 Aug; 234(8):12325-12340. PubMed ID: 30697728 [TBL] [Abstract][Full Text] [Related]
16. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors. Jiang H; Geng D; Liu H; Li Z; Cao J Drug Deliv; 2016 Nov; 23(9):3665-3673. PubMed ID: 27749102 [TBL] [Abstract][Full Text] [Related]
17. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential. Halevas E; Mavroidi B; Swanson CH; Smith GC; Moschona A; Hadjispyrou S; Salifoglou A; Pantazaki AA; Pelecanou M; Litsardakis G J Inorg Biochem; 2019 Oct; 199():110778. PubMed ID: 31442839 [TBL] [Abstract][Full Text] [Related]
18. Critical parameters dictating efficiency of membrane-mediated drug transfer using nanoparticles. Abbasi S; Kajimoto K; Harashima H Int J Pharm; 2018 Dec; 553(1-2):398-407. PubMed ID: 30393168 [TBL] [Abstract][Full Text] [Related]
19. Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention. Allijn IE; Schiffelers RM; Storm G Int J Pharm; 2016 Jun; 506(1-2):407-13. PubMed ID: 27139142 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Garbuzenko OB; Winkler J; Tomassone MS; Minko T Langmuir; 2014 Nov; 30(43):12941-9. PubMed ID: 25300552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]