BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 31015019)

  • 1. The suitability of liposomes for the delivery of hydrophobic drugs - A case study with curcumin.
    Kolter M; Wittmann M; Köll-Weber M; Süss R
    Eur J Pharm Biopharm; 2019 Jul; 140():20-28. PubMed ID: 31015019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines.
    Doktorovova S; Souto EB; Silva AM
    Pharm Dev Technol; 2018 Jan; 23(1):96-105. PubMed ID: 28949267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro.
    Li H; Zhang N; Hao Y; Wang Y; Jia S; Zhang H; Zhang Y; Zhang Z
    Drug Deliv; 2014 Aug; 21(5):379-87. PubMed ID: 24160816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposomal curcumin and its application in cancer.
    Feng T; Wei Y; Lee RJ; Zhao L
    Int J Nanomedicine; 2017; 12():6027-6044. PubMed ID: 28860764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin.
    Shukla M; Jaiswal S; Sharma A; Srivastava PK; Arya A; Dwivedi AK; Lal J
    Drug Dev Ind Pharm; 2017 May; 43(5):847-861. PubMed ID: 27648633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin.
    Hamano N; Böttger R; Lee SE; Yang Y; Kulkarni JA; Ip S; Cullis PR; Li SD
    Mol Pharm; 2019 Sep; 16(9):3957-3967. PubMed ID: 31381352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.
    Baek JS; Cho CW
    Eur J Pharm Biopharm; 2017 Aug; 117():132-140. PubMed ID: 28412471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models.
    Lübtow MM; Nelke LC; Seifert J; Kühnemundt J; Sahay G; Dandekar G; Nietzer SL; Luxenhofer R
    J Control Release; 2019 Jun; 303():162-180. PubMed ID: 30981815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel dipeptide nanoparticles for effective curcumin delivery.
    Alam S; Panda JJ; Chauhan VS
    Int J Nanomedicine; 2012; 7():4207-22. PubMed ID: 22915849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin.
    Peng S; Zou L; Liu W; Li Z; Liu W; Hu X; Chen X; Liu C
    Carbohydr Polym; 2017 Jan; 156():322-332. PubMed ID: 27842829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.
    Moku G; Gulla SK; Nimmu NV; Khalid S; Chaudhuri A
    Biomater Sci; 2016 Apr; 4(4):627-38. PubMed ID: 26806172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Curcumin's therapeutic potential in cancer treatment through ultrasound mediated liposomal delivery.
    Radha R; Paul V; Anjum S; Bouakaz A; Pitt WG; Husseini GA
    Sci Rep; 2024 May; 14(1):10499. PubMed ID: 38714740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.
    Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y
    Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral bioavailability of curcumin: problems and advancements.
    Liu W; Zhai Y; Heng X; Che FY; Chen W; Sun D; Zhai G
    J Drug Target; 2016 Sep; 24(8):694-702. PubMed ID: 26942997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects.
    Saheb M; Fereydouni N; Nemati S; Barreto GE; Johnston TP; Sahebkar A
    J Cell Physiol; 2019 Aug; 234(8):12325-12340. PubMed ID: 30697728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors.
    Jiang H; Geng D; Liu H; Li Z; Cao J
    Drug Deliv; 2016 Nov; 23(9):3665-3673. PubMed ID: 27749102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential.
    Halevas E; Mavroidi B; Swanson CH; Smith GC; Moschona A; Hadjispyrou S; Salifoglou A; Pantazaki AA; Pelecanou M; Litsardakis G
    J Inorg Biochem; 2019 Oct; 199():110778. PubMed ID: 31442839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical parameters dictating efficiency of membrane-mediated drug transfer using nanoparticles.
    Abbasi S; Kajimoto K; Harashima H
    Int J Pharm; 2018 Dec; 553(1-2):398-407. PubMed ID: 30393168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention.
    Allijn IE; Schiffelers RM; Storm G
    Int J Pharm; 2016 Jun; 506(1-2):407-13. PubMed ID: 27139142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs.
    Garbuzenko OB; Winkler J; Tomassone MS; Minko T
    Langmuir; 2014 Nov; 30(43):12941-9. PubMed ID: 25300552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.