BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31015209)

  • 1. A parsimonious 3-gene signature predicts clinical outcomes in an acute myeloid leukemia multicohort study.
    Wagner S; Vadakekolathu J; Tasian SK; Altmann H; Bornhäuser M; Pockley AG; Ball GR; Rutella S
    Blood Adv; 2019 Apr; 3(8):1330-1346. PubMed ID: 31015209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia.
    Metzeler KH; Hummel M; Bloomfield CD; Spiekermann K; Braess J; Sauerland MC; Heinecke A; Radmacher M; Marcucci G; Whitman SP; Maharry K; Paschka P; Larson RA; Berdel WE; Büchner T; Wörmann B; Mansmann U; Hiddemann W; Bohlander SK; Buske C; ;
    Blood; 2008 Nov; 112(10):4193-201. PubMed ID: 18716133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study.
    Marcucci G; Maharry K; Whitman SP; Vukosavljevic T; Paschka P; Langer C; Mrózek K; Baldus CD; Carroll AJ; Powell BL; Kolitz JE; Larson RA; Bloomfield CD;
    J Clin Oncol; 2007 Aug; 25(22):3337-43. PubMed ID: 17577018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities.
    Gröschel S; Lugthart S; Schlenk RF; Valk PJ; Eiwen K; Goudswaard C; van Putten WJ; Kayser S; Verdonck LF; Lübbert M; Ossenkoppele GJ; Germing U; Schmidt-Wolf I; Schlegelberger B; Krauter J; Ganser A; Döhner H; Löwenberg B; Döhner K; Delwel R
    J Clin Oncol; 2010 Apr; 28(12):2101-7. PubMed ID: 20308656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study.
    Li Z; Herold T; He C; Valk PJ; Chen P; Jurinovic V; Mansmann U; Radmacher MD; Maharry KS; Sun M; Yang X; Huang H; Jiang X; Sauerland MC; Büchner T; Hiddemann W; Elkahloun A; Neilly MB; Zhang Y; Larson RA; Le Beau MM; Caligiuri MA; Döhner K; Bullinger L; Liu PP; Delwel R; Marcucci G; Lowenberg B; Bloomfield CD; Rowley JD; Bohlander SK; Chen J
    J Clin Oncol; 2013 Mar; 31(9):1172-81. PubMed ID: 23382473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High receptor tyrosine kinase (FLT3, KIT) transcript versus anti-apoptotic (BCL2) transcript ratio independently predicts inferior outcome in pediatric acute myeloid leukemia.
    Sharawat SK; Bakhshi R; Vishnubhatla S; Bakhshi S
    Blood Cells Mol Dis; 2015 Jan; 54(1):56-64. PubMed ID: 25216797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical and Biological Implications of Mutational Spectrum in Acute Myeloid Leukemia of FAB Subtypes M0 and M1.
    Cheng Z; Dai Y; Pang Y; Jiao Y; Zhao H; Wu S; Zhang L; Zhang Y; Wang X; Wang L; Ma D; Qin T; Hu N; Zhang Y; Hu K; Zhang Q; Shi J; Fu L
    Cell Physiol Biochem; 2018; 47(5):1853-1861. PubMed ID: 29961066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational spectrum and risk stratification of intermediate-risk acute myeloid leukemia patients based on next-generation sequencing.
    Wang B; Liu Y; Hou G; Wang L; Lv N; Xu Y; Xu Y; Wang X; Xuan Z; Jing Y; Li H; Jin X; Deng A; Wang L; Gao X; Dou L; Liang J; Chen C; Li Y; Yu L
    Oncotarget; 2016 May; 7(22):32065-78. PubMed ID: 27062340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment in patients with acute myeloid leukemia and a normal karyotype.
    Bienz M; Ludwig M; Leibundgut EO; Mueller BU; Ratschiller D; Solenthaler M; Fey MF; Pabst T
    Clin Cancer Res; 2005 Feb; 11(4):1416-24. PubMed ID: 15746041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia.
    Duployez N; Marceau-Renaut A; Villenet C; Petit A; Rousseau A; Ng SWK; Paquet A; Gonzales F; Barthélémy A; Leprêtre F; Pottier N; Nelken B; Michel G; Baruchel A; Bertrand Y; Leverger G; Lapillonne H; Figeac M; Dick JE; Wang JCY; Preudhomme C; Cheok M
    Leukemia; 2019 Feb; 33(2):348-357. PubMed ID: 30089916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognostic significance of FLT3-ITD in pediatric acute myeloid leukemia: a meta-analysis of cohort studies.
    Wu X; Feng X; Zhao X; Ma F; Liu N; Guo H; Li C; Du H; Zhang B
    Mol Cell Biochem; 2016 Sep; 420(1-2):121-8. PubMed ID: 27435859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute Myeloid Leukemia (AML): Upregulation of BAALC/MN1/MLLT11/EVI1 Gene Cluster Relate With Poor Overall Survival and a Possible Linkage With Coexpression of MYC/BCL2 Proteins.
    Akhter A; Farooq F; Elyamany G; Mughal MK; Rashid-Kolvear F; Shabani-Rad MT; Street L; Mansoor A
    Appl Immunohistochem Mol Morphol; 2018 Aug; 26(7):483-488. PubMed ID: 28362701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive expression of
    Yan T; Naren D; Gong Y
    Expert Rev Hematol; 2020 Mar; 13(3):289-297. PubMed ID: 31990602
    [No Abstract]   [Full Text] [Related]  

  • 14. High PRDM16 expression identifies a prognostic subgroup of pediatric acute myeloid leukaemia correlated to FLT3-ITD, KMT2A-PTD, and NUP98-NSD1: the results of the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 trial.
    Shiba N; Ohki K; Kobayashi T; Hara Y; Yamato G; Tanoshima R; Ichikawa H; Tomizawa D; Park MJ; Shimada A; Sotomatsu M; Arakawa H; Horibe K; Adachi S; Taga T; Tawa A; Hayashi Y
    Br J Haematol; 2016 Feb; 172(4):581-91. PubMed ID: 26684393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BAALC is an important predictor of refractoriness to chemotherapy and poor survival in intermediate-risk acute myeloid leukemia (AML).
    Santamaría C; Chillón MC; García-Sanz R; Pérez C; Caballero MD; Mateos MV; Ramos F; de Coca AG; Alonso JM; Giraldo P; Bernal T; Queizán JA; Rodríguez JN; Puig N; Balanzategui A; Sarasquete ME; Alcoceba M; Díaz-Mediavilla J; San Miguel J; González M
    Ann Hematol; 2010 May; 89(5):453-8. PubMed ID: 19943049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD34 expression predicts an adverse outcome in patients with NPM1-positive acute myeloid leukemia.
    Dang H; Chen Y; Kamel-Reid S; Brandwein J; Chang H
    Hum Pathol; 2013 Oct; 44(10):2038-46. PubMed ID: 23701943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying a novel 5-gene signature predicting clinical outcomes in acute myeloid leukemia.
    Sha K; Lu Y; Zhang P; Pei R; Shi X; Fan Z; Chen L
    Clin Transl Oncol; 2021 Mar; 23(3):648-656. PubMed ID: 32776271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced protocadherin17 expression in leukemia stem cells: the clinical and biological effect in acute myeloid leukemia.
    Xu ZJ; Ma JC; Zhou JD; Wen XM; Yao DM; Zhang W; Ji RB; Wu DH; Tang LJ; Deng ZQ; Qian J; Lin J
    J Transl Med; 2019 Mar; 17(1):102. PubMed ID: 30922328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A six-gene leukemic stem cell score identifies high risk pediatric acute myeloid leukemia.
    Elsayed AH; Rafiee R; Cao X; Raimondi S; Downing JR; Ribeiro R; Fan Y; Gruber TA; Baker S; Klco J; Rubnitz JE; Pounds S; Lamba JK
    Leukemia; 2020 Mar; 34(3):735-745. PubMed ID: 31645648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Octamer-binding transcription factor 4 correlates with complex karyotype, FLT3-ITD mutation and poorer risk stratification, and predicts unfavourable prognosis in patients with acute myeloid leukaemia.
    Xiang Y; Zhou X
    Hematology; 2018 Dec; 23(10):721-728. PubMed ID: 29950146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.