These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 31015503)
21. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Soskine M; Biesemans A; Moeyaert B; Cheley S; Bayley H; Maglia G Nano Lett; 2012 Sep; 12(9):4895-900. PubMed ID: 22849517 [TBL] [Abstract][Full Text] [Related]
22. Peptide sequencing based on host-guest interaction-assisted nanopore sensing. Zhang Y; Yi Y; Li Z; Zhou K; Liu L; Wu HC Nat Methods; 2024 Jan; 21(1):102-109. PubMed ID: 37957431 [TBL] [Abstract][Full Text] [Related]
23. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
24. Forming an alpha-hemolysin nanopore for single-molecule analysis. Jetha NN; Wiggin M; Marziali A Methods Mol Biol; 2009; 544():113-27. PubMed ID: 19488697 [TBL] [Abstract][Full Text] [Related]
25. Retarded Translocation of Nucleic Acids through α-Hemolysin Nanopore in the Presence of a Calcium Flux. Wang S; Wang Y; Yan S; Du X; Zhang P; Chen HY; Huang S ACS Appl Mater Interfaces; 2020 Jun; 12(24):26926-26935. PubMed ID: 32432849 [TBL] [Abstract][Full Text] [Related]
26. Translocation of single-stranded DNA through the α-hemolysin protein nanopore in acidic solutions. de Zoysa RS; Krishantha DM; Zhao Q; Gupta J; Guan X Electrophoresis; 2011 Nov; 32(21):3034-41. PubMed ID: 21997574 [TBL] [Abstract][Full Text] [Related]
27. One-Pot Species Release and Nanopore Detection in a Voltage-Stable Lipid Bilayer Platform. Kang X; Alibakhshi MA; Wanunu M Nano Lett; 2019 Dec; 19(12):9145-9153. PubMed ID: 31724865 [TBL] [Abstract][Full Text] [Related]
28. Structural Determinants of Chirally Selective Transport of Amino Acids through the α-Hemolysin Protein Nanopores of Free-Standing Planar Lipid Membranes. Lee Y; Chong S; Lee C; Kim J; Choi SQ Nano Lett; 2024 Jan; 24(2):681-687. PubMed ID: 38185873 [TBL] [Abstract][Full Text] [Related]
29. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations. H H; Mallajosyula SS ACS Appl Mater Interfaces; 2023 Nov; 15(47):55095-55108. PubMed ID: 37965826 [TBL] [Abstract][Full Text] [Related]
30. Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. Stoddart D; Heron AJ; Klingelhoefer J; Mikhailova E; Maglia G; Bayley H Nano Lett; 2010 Sep; 10(9):3633-7. PubMed ID: 20704324 [TBL] [Abstract][Full Text] [Related]
31. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores Fennouri A; Ramiandrisoa J; Bacri L; Mathé J; Daniel R Eur Phys J E Soft Matter; 2018 Oct; 41(10):127. PubMed ID: 30338424 [TBL] [Abstract][Full Text] [Related]
32. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition. Cabello-Aguilar S; Balme S; Chaaya AA; Bechelany M; Balanzat E; Janot JM; Pochat-Bohatier C; Miele P; Dejardin P Nanoscale; 2013 Oct; 5(20):9582-6. PubMed ID: 24057036 [TBL] [Abstract][Full Text] [Related]
33. Single-molecule study of proteins by biological nanopore sensors. Wu D; Bi S; Zhang L; Yang J Sensors (Basel); 2014 Sep; 14(10):18211-22. PubMed ID: 25268917 [TBL] [Abstract][Full Text] [Related]
34. Click Addition of a DNA Thread to the N-Termini of Peptides for Their Translocation through Solid-State Nanopores. Biswas S; Song W; Borges C; Lindsay S; Zhang P ACS Nano; 2015 Oct; 9(10):9652-64. PubMed ID: 26364915 [TBL] [Abstract][Full Text] [Related]
35. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation. Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806 [TBL] [Abstract][Full Text] [Related]
36. γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level. Tan CS; Fleming AM; Ren H; Burrows CJ; White HS J Am Chem Soc; 2018 Oct; 140(43):14224-14234. PubMed ID: 30269492 [TBL] [Abstract][Full Text] [Related]
37. Investigation of single-molecule kinetics mediated by weak hydrogen bonds within a biological nanopore. Asandei A; Apetrei A; Park Y; Hahm KS; Luchian T Langmuir; 2011 Jan; 27(1):19-24. PubMed ID: 21128603 [TBL] [Abstract][Full Text] [Related]
38. Directional control of a processive molecular hopper. Qing Y; Ionescu SA; Pulcu GS; Bayley H Science; 2018 Aug; 361(6405):908-912. PubMed ID: 30166488 [TBL] [Abstract][Full Text] [Related]
39. Oligonucleotide-Directed Protein Threading Through a Rigid Nanopore. Celaya G; Rodriguez-Larrea D Methods Mol Biol; 2021; 2186():135-144. PubMed ID: 32918734 [TBL] [Abstract][Full Text] [Related]
40. Single-molecule DNA detection using a novel SP1 protein nanopore. Wang HY; Li Y; Qin LX; Heyman A; Shoseyov O; Willner I; Long YT; Tian H Chem Commun (Camb); 2013 Feb; 49(17):1741-3. PubMed ID: 23340583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]