BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31015536)

  • 21. Coordinated regulation of iron metabolism in Cryptococcus neoformans by GATA and CCAAT transcription factors: connections with virulence.
    Jung WH; Sánchez-León E; Kronstad JW
    Curr Genet; 2021 Aug; 67(4):583-593. PubMed ID: 33760942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans.
    Lee KT; Hong J; Lee DG; Lee M; Cha S; Lim YG; Jung KW; Hwangbo A; Lee Y; Yu SJ; Chen YL; Lee JS; Cheong E; Bahn YS
    Nat Commun; 2020 Mar; 11(1):1521. PubMed ID: 32251295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluconazole induces ROS in Cryptococcus neoformans and contributes to DNA damage in vitro.
    Peng CA; Gaertner AAE; Henriquez SA; Fang D; Colon-Reyes RJ; Brumaghim JL; Kozubowski L
    PLoS One; 2018; 13(12):e0208471. PubMed ID: 30532246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulatory Mechanism of the Atypical AP-1-Like Transcription Factor Yap1 in Cryptococcus neoformans.
    So YS; Maeng S; Yang DH; Kim H; Lee KT; Yu SR; Tenor JL; Giri VK; Toffaletti DL; Arras S; Fraser JA; Perfect JR; Bahn YS
    mSphere; 2019 Nov; 4(6):. PubMed ID: 31748248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray.
    Kraus PR; Boily MJ; Giles SS; Stajich JE; Allen A; Cox GM; Dietrich FS; Perfect JR; Heitman J
    Eukaryot Cell; 2004 Oct; 3(5):1249-60. PubMed ID: 15470254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino acid substitution in Cryptococcus neoformans lanosterol 14-α-demethylase involved in fluconazole resistance in clinical isolates.
    Bosco-Borgeat ME; Mazza M; Taverna CG; Córdoba S; Murisengo OA; Vivot W; Davel G
    Rev Argent Microbiol; 2016; 48(2):137-42. PubMed ID: 27311753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomic analysis reveals the relationship of melanization to growth and resistance to gamma radiation in Cryptococcus neoformans.
    Schultzhaus Z; Chen A; Kim S; Shuryak I; Chang M; Wang Z
    Environ Microbiol; 2019 Aug; 21(8):2613-2628. PubMed ID: 30724440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum.
    Guan F; Pan Y; Li J; Liu G
    Sci China Life Sci; 2017 Sep; 60(9):958-967. PubMed ID: 28812298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide analysis of the regulation of Cu metabolism in Cryptococcus neoformans.
    Garcia-Santamarina S; Festa RA; Smith AD; Yu CH; Probst C; Ding C; Homer CM; Yin J; Noonan JP; Madhani H; Perfect JR; Thiele DJ
    Mol Microbiol; 2018 Jun; 108(5):473-494. PubMed ID: 29608794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating Conservation of the Cell-Cycle-Regulated Transcriptional Program in the Fungal Pathogen, Cryptococcus neoformans.
    Kelliher CM; Leman AR; Sierra CS; Haase SB
    PLoS Genet; 2016 Dec; 12(12):e1006453. PubMed ID: 27918582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of an SKN7 homologue in Cryptococcus neoformans.
    Wormley FL; Heinrich G; Miller JL; Perfect JR; Cox GM
    Infect Immun; 2005 Aug; 73(8):5022-30. PubMed ID: 16041017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans.
    Lian T; Simmer MI; D'Souza CA; Steen BR; Zuyderduyn SD; Jones SJ; Marra MA; Kronstad JW
    Mol Microbiol; 2005 Mar; 55(5):1452-72. PubMed ID: 15720553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term.
    Scherens B; Feller A; Vierendeels F; Messenguy F; Dubois E
    FEMS Yeast Res; 2006 Aug; 6(5):777-91. PubMed ID: 16879428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis.
    Upadhya R; Baker LG; Lam WC; Specht CA; Donlin MJ; Lodge JK
    mBio; 2018 Nov; 9(6):. PubMed ID: 30459196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017.
    Selb R; Fuchs V; Graf B; Hamprecht A; Hogardt M; Sedlacek L; Schwarz R; Idelevich EA; Becker SL; Held J; Küpper-Tetzel CP; McCormick-Smith I; Heckmann D; Gerkrath J; Han CO; Wilmes D; Rickerts V
    Int J Med Microbiol; 2019 Sep; 309(6):151336. PubMed ID: 31444102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Putative orotate transporter of Cryptococcus neoformans, Oat1, is a member of the NCS1/PRT transporter super family and its loss causes attenuation of virulence.
    Toh-E A; Ohkusu M; Shimizu K; Takahashi-Nakaguchi A; Kawamoto S; Ishiwada N; Watanabe A; Kamei K
    Curr Genet; 2017 Aug; 63(4):697-707. PubMed ID: 28011993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the inositol pyrophosphate multikinase Kcs1 in Cryptococcus inositol metabolism.
    Liao G; Wang Y; Liu TB; Kohli G; Qian W; Shor E; Subbian S; Xue C
    Fungal Genet Biol; 2018 Apr; 113():42-51. PubMed ID: 29357302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Cryptococcus neoformans STE12alpha gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific.
    Wickes BL; Edman U; Edman JC
    Mol Microbiol; 1997 Dec; 26(5):951-60. PubMed ID: 9426132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contribution of the White Collar complex to Cryptococcus neoformans virulence is independent of its light-sensing capabilities.
    Zhu P; Idnurm A
    Fungal Genet Biol; 2018 Dec; 121():56-64. PubMed ID: 30266690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.