These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31015951)

  • 41. Morphology Control via RAFT Emulsion Polymerization-Induced Self-Assembly: Systematic Investigation of Core-Forming Blocks.
    Takashima A; Maeda Y; Sugihara S
    ACS Omega; 2022 Aug; 7(30):26894-26904. PubMed ID: 35936476
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Block Copolymer Nanoparticles are Effective Dispersants for Micrometer-Sized Organic Crystalline Particles.
    Chan DHH; Kynaston EL; Lindsay C; Taylor P; Armes SP
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):30235-30243. PubMed ID: 34151553
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RAFT Emulsion Polymerization of Styrene Using a Poly((
    Nieswandt K; Georgopanos P; Held M; Sperling E; Abetz V
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Block Copolymer Nanoparticles Prepared via Polymerization-Induced Self-Assembly Provide Excellent Boundary Lubrication Performance for Next-Generation Ultralow-Viscosity Automotive Engine Oils.
    Derry MJ; Smith T; O'Hora PS; Armes SP
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33364-33369. PubMed ID: 31430432
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interfacial Supra-Assembly of Copolymer Nanoparticles Enables the Formation of Nanocomposite Crystals with a Tunable Internal Structure.
    Zhao Z; Chen W; Li Q; Xiong B; Ning Y; Yang P
    J Am Chem Soc; 2023 Oct; 145(39):21546-21553. PubMed ID: 37748127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural Difference in Macro-RAFT Agents Redirects Polymerization-Induced Self-Assembly.
    Zhang Y; Yu L; Dai X; Zhang L; Tan J
    ACS Macro Lett; 2019 Sep; 8(9):1102-1109. PubMed ID: 35619459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-pot synthesis of block copolymers in supercritical carbon dioxide: a simple versatile route to nanostructured microparticles.
    Jennings J; Beija M; Richez AP; Cooper SD; Mignot PE; Thurecht KJ; Jack KS; Howdle SM
    J Am Chem Soc; 2012 Mar; 134(10):4772-81. PubMed ID: 22309892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.
    Tan J; Liu D; Huang C; Li X; He J; Xu Q; Zhang L
    Macromol Rapid Commun; 2017 Aug; 38(15):. PubMed ID: 28564492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymerization-Induced Self-Assembly of Metallo-Polyelectrolyte Block Copolymers.
    Rahman MA; Cha Y; Yuan L; Pageni P; Zhu T; Jui MS; Tang C
    J Polym Sci (2020); 2020 Jan; 58(1):77-83. PubMed ID: 34337427
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Block Copolymer Vesicles with Tunable Membrane Thicknesses and Compositions Prepared by Aqueous Seeded Photoinitiated Polymerization-Induced Self-Assembly at Room Temperature.
    Zhang Q; Wang R; Chen Y; Zhang L; Tan J
    Langmuir; 2022 Mar; 38(8):2699-2710. PubMed ID: 35176211
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of Cross-Linked Block Copolymer Nanoassemblies and their Coating Application.
    Shao G; Yu Y; Zhang W
    Macromol Rapid Commun; 2022 Jul; 43(14):e2100909. PubMed ID: 35182096
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(sarcosine)-Based Nano-Objects with Multi-Protease Resistance by Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA).
    Varlas S; Georgiou PG; Bilalis P; Jones JR; Hadjichristidis N; O'Reilly RK
    Biomacromolecules; 2018 Nov; 19(11):4453-4462. PubMed ID: 30351914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sterically Stabilized Diblock Copolymer Nanoparticles Enable Convenient Preparation of Suspension Concentrates Comprising Various Agrochemical Actives.
    Chan DHH; Deane OJ; Kynaston EL; Lindsay C; Taylor P; Armes SP
    Langmuir; 2022 Mar; 38(9):2885-2894. PubMed ID: 35192370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aqueous worm gels can be reconstituted from freeze-dried diblock copolymer powder.
    Kocik MK; Mykhaylyk OO; Armes SP
    Soft Matter; 2014 Jun; 10(22):3984-92. PubMed ID: 24733440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of Thermoresponsive Diblock Copolymer Nano-Objects via RAFT Aqueous Emulsion Polymerization of Hydroxybutyl Methacrylate.
    Hunter SJ; Penfold NJW; Jones ER; Zinn T; Mykhaylyk OO; Armes SP
    Macromolecules; 2022 Apr; 55(8):3051-3062. PubMed ID: 35492576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polymerization-induced thermal self-assembly (PITSA).
    Figg CA; Simula A; Gebre KA; Tucker BS; Haddleton DM; Sumerlin BS
    Chem Sci; 2015 Feb; 6(2):1230-1236. PubMed ID: 29560209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Beyond Simple AB Diblock Copolymers: Application of Bifunctional and Trifunctional RAFT Agents to PISA in Water.
    Mellot G; Beaunier P; Guigner JM; Bouteiller L; Rieger J; Stoffelbach F
    Macromol Rapid Commun; 2019 Jan; 40(2):e1800315. PubMed ID: 29924439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequence-Controlled Polymerization-Induced Self-Assembly.
    Wang L; Ding Y; Liu Q; Zhao Q; Dai X; Lu X; Cai Y
    ACS Macro Lett; 2019 May; 8(5):623-628. PubMed ID: 35619369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH-Responsive Schizophrenic Diblock Copolymers Prepared by Polymerization-Induced Self-Assembly.
    Canning SL; Neal TJ; Armes SP
    Macromolecules; 2017 Aug; 50(16):6108-6116. PubMed ID: 28867829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Guidelines for the Synthesis of Block Copolymer Particles of Various Morphologies by RAFT Dispersion Polymerization.
    Rieger J
    Macromol Rapid Commun; 2015 Aug; 36(16):1458-71. PubMed ID: 26010064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.