BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31016136)

  • 1. Heterologous transporters from anaerobic fungi bolster fluoride tolerance in
    Seppälä S; Yoo JI; Yur D; O'Malley MA
    Metab Eng Commun; 2019 Dec; 9():e00091. PubMed ID: 31016136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast.
    Podolsky IA; Seppälä S; Xu H; Jin YS; O'Malley MA
    Metab Eng; 2021 Jul; 66():137-147. PubMed ID: 33887459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants1.
    Tausta SL; Berbasova T; Peverelli M; Strobel SA
    Plant Physiol; 2021 Mar; ():. PubMed ID: 33787927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants.
    Tausta SL; Berbasova T; Peverelli M; Strobel SA
    Plant Physiol; 2021 Mar; 186(2):1143-58. PubMed ID: 33744970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoride export (FEX) proteins from fungi, plants and animals are 'single barreled' channels containing one functional and one vestigial ion pore.
    Berbasova T; Nallur S; Sells T; Smith KD; Gordon PB; Tausta SL; Strobel SA
    PLoS One; 2017; 12(5):e0177096. PubMed ID: 28472134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters.
    Seppälä S; Solomon KV; Gilmore SP; Henske JK; O'Malley MA
    Microb Cell Fact; 2016 Dec; 15(1):212. PubMed ID: 27998268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification.
    Johnston NR; Cline G; Strobel SA
    Chem Res Toxicol; 2022 Nov; 35(11):2085-2096. PubMed ID: 36282204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and expression of small multidrug resistance transporters in early-branching anaerobic fungi.
    Seppälä S; Gierke T; Schauer EE; Brown JL; O'Malley MA
    Protein Sci; 2023 Sep; 32(9):e4730. PubMed ID: 37470750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate and Phosphate Transporters Rescue Fluoride Toxicity in Yeast.
    Johnston NR; Strobel SA
    Chem Res Toxicol; 2019 Nov; 32(11):2305-2319. PubMed ID: 31576749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPCR-FEX: A Fluoride-Based Selection System for Rapid GPCR Screening and Engineering.
    Yoo JI; Navaratna TA; Kolence P; O'Malley MA
    ACS Synth Biol; 2022 Jan; 11(1):39-45. PubMed ID: 34979077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.
    Li S; Smith KD; Davis JH; Gordon PB; Breaker RR; Strobel SA
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):19018-23. PubMed ID: 24173035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis.
    Bouwknegt J; Koster CC; Vos AM; Ortiz-Merino RA; Wassink M; Luttik MAH; van den Broek M; Hagedoorn PL; Pronk JT
    Fungal Biol Biotechnol; 2021 Oct; 8(1):10. PubMed ID: 34656184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae.
    Mans R; Hassing EJ; Wijsman M; Giezekamp A; Pronk JT; Daran JM; van Maris AJA
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29145596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairing fluoride export of Aspergillus fumigatus mitigates its voriconazole resistance.
    Binder J; Held J; Krappmann S
    Int J Antimicrob Agents; 2019 May; 53(5):689-693. PubMed ID: 30763611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory evolution and physiological analysis of Saccharomyces cerevisiae strains dependent on sucrose uptake via the Phaseolus vulgaris Suf1 transporter.
    Marques WL; van der Woude LN; Luttik MAH; van den Broek M; Nijenhuis JM; Pronk JT; van Maris AJA; Mans R; Gombert AK
    Yeast; 2018 Dec; 35(12):639-652. PubMed ID: 30221387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoride transport in Arabidopsis thaliana plants is impaired in Fluoride EXporter (FEX) mutants.
    Tausta SL; Fontaine K; Hillmer AT; Strobel SA
    Plant Mol Biol; 2024 Feb; 114(1):17. PubMed ID: 38342783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.
    Bracher JM; de Hulster E; Koster CC; van den Broek M; Daran JG; van Maris AJA; Pronk JT
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural introspection of a putative fluoride transporter in plants.
    Banerjee A; Roychoudhury A
    3 Biotech; 2019 Mar; 9(3):103. PubMed ID: 30800614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae.
    Sen A; Acosta-Sampson L; Alvaro CG; Ahn JS; Cate JH; Thorner J
    Appl Environ Microbiol; 2016 Dec; 82(24):7074-7085. PubMed ID: 27694235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae.
    Adamo GM; Lotti M; Tamás MJ; Brocca S
    Microbiology (Reading); 2012 Sep; 158(Pt 9):2325-2335. PubMed ID: 22790396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.