These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 31016299)

  • 1. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts.
    Kitsara M; Blanquer A; Murillo G; Humblot V; De Bragança Vieira S; Nogués C; Ibáñez E; Esteve J; Barrios L
    Nanoscale; 2019 May; 11(18):8906-8917. PubMed ID: 31016299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds.
    Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL
    Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds.
    Mirzaei A; Moghadam AS; Abazari MF; Nejati F; Torabinejad S; Kaabi M; Enderami SE; Ardeshirylajimi A; Darvish M; Soleimanifar F; Saburi E
    J Cell Physiol; 2019 Aug; 234(10):17854-17862. PubMed ID: 30851069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds.
    Jing X; Mi HY; Peng J; Peng XF; Turng LS
    Carbohydr Polym; 2015 Mar; 117():941-949. PubMed ID: 25498720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering.
    Ardeshirylajimi A; Ghaderian SM; Omrani MD; Moradi SL
    Gene; 2018 Nov; 676():195-201. PubMed ID: 30030200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyvinylidene fluoride/silk fibroin-based bio-piezoelectric nanofibrous scaffolds for biomedical application.
    Lee JC; Suh IW; Park CH; Kim CS
    J Tissue Eng Regen Med; 2021 Oct; 15(10):869-877. PubMed ID: 34339581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications.
    Guo HF; Li ZS; Dong SW; Chen WJ; Deng L; Wang YF; Ying DJ
    Colloids Surf B Biointerfaces; 2012 Aug; 96():29-36. PubMed ID: 22503631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers.
    Saburi E; Islami M; Hosseinzadeh S; Moghadam AS; Mansour RN; Azadian E; Joneidi Z; Nikpoor AR; Ghadiani MH; Khodaii Z; Ardeshirylajimi A
    Gene; 2019 May; 696():72-79. PubMed ID: 30772518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporated-bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation.
    Abazari MF; Soleimanifar F; Enderami SE; Nematzadeh M; Nasiri N; Nejati F; Saburi E; Khodashenas S; Darbasizadeh B; Khani MM; Ghoraeian P
    J Cell Biochem; 2019 Oct; 120(10):16750-16759. PubMed ID: 31081968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterisation of an electrospun tubular 3D scaffold platform of poly(vinylidene fluoride-co-hexafluoropropylene) for small-diameter blood vessel application.
    Ahmed F; Roy Choudhury N; Dutta NK; Zou L; Zannettino A
    J Biomater Sci Polym Ed; 2014; 25(18):2023-41. PubMed ID: 25358334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications.
    Augustine A; Augustine R; Hasan A; Raghuveeran V; Rouxel D; Kalarikkal N; Thomas S
    J Mater Sci Mater Med; 2019 Aug; 30(8):96. PubMed ID: 31414231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies.
    Mohseni M; S A AR; H Shirazi F; Nemati NH
    Int J Biol Macromol; 2021 Jan; 167():881-893. PubMed ID: 33186646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications.
    Zaszczyńska A; Gradys A; Ziemiecka A; Szewczyk PK; Tymkiewicz R; Lewandowska-Szumieł M; Stachewicz U; Sajkiewicz PŁ
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core-shell nanofibers for bone tissue engineering applications.
    Wang M; Zhou Y; Shi D; Chang R; Zhang J; Keidar M; Webster TJ
    Biomater Sci; 2019 May; 7(6):2430-2439. PubMed ID: 30933194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes in PVDF fibers due to electrospinning and its effect on biological function.
    Damaraju SM; Wu S; Jaffe M; Arinzeh TL
    Biomed Mater; 2013 Aug; 8(4):045007. PubMed ID: 23770816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoelectric electrospun nanocomposite comprising Au NPs/PVDF for nerve tissue engineering.
    Motamedi AS; Mirzadeh H; Hajiesmaeilbaigi F; Bagheri-Khoulenjani S; Shokrgozar MA
    J Biomed Mater Res A; 2017 Jul; 105(7):1984-1993. PubMed ID: 28256789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Piezoelectric PVDF-TrFE Fibrous Scaffold to Guide Cell Adhesion, Proliferation, and Alignment.
    Orkwis JA; Wolf AK; Shahid SM; Smith C; Esfandiari L; Harris GM
    Macromol Biosci; 2020 Sep; 20(9):e2000197. PubMed ID: 32691517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application.
    Sharifi F; Atyabi SM; Norouzian D; Zandi M; Irani S; Bakhshi H
    Int J Biol Macromol; 2018 Aug; 115():243-248. PubMed ID: 29654862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.