These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 31016299)
21. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Wang J; Tian L; Chen N; Ramakrishna S; Mo X Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306 [TBL] [Abstract][Full Text] [Related]
22. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
23. Cell Adhesion-Mediated Piezoelectric Self-Stimulation on Polydopamine-Modified Poly(vinylidene fluoride) Membranes. Xue G; Zhang Y; Xie T; Zhang Z; Liu Q; Li X; Gou X ACS Appl Mater Interfaces; 2021 Apr; 13(15):17361-17371. PubMed ID: 33823586 [TBL] [Abstract][Full Text] [Related]
24. Mechanical stimulation of a bioactive, functionalized PVDF-TrFE scaffold provides electrical signaling for nerve repair applications. Orkwis JA; Wolf AK; Mularczyk ZJ; Bryan AE; Smith CS; Brown R; Krutko M; McCann A; Collar RM; Esfandiari L; Harris GM Biomater Adv; 2022 Sep; 140():213081. PubMed ID: 35994930 [TBL] [Abstract][Full Text] [Related]
25. Force induced piezoelectric effect of polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene nanofibrous scaffolds. Al Halabi F; Gryshkov O; Kuhn AI; Kapralova VM; Glasmacher B Int J Artif Organs; 2018 Nov; 41(11):811-822. PubMed ID: 29976127 [TBL] [Abstract][Full Text] [Related]
26. Experimental-numerical analysis of cell adhesion-mediated electromechanical stimulation on piezoelectric nanofiber scaffolds. Xie T; Liu Q; Xue G; Zhang Y; Zhou J; Zhu Z; Gou X J Biomech; 2021 Dec; 129():110777. PubMed ID: 34601217 [TBL] [Abstract][Full Text] [Related]
27. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149 [TBL] [Abstract][Full Text] [Related]
28. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
29. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
30. Hydroxyapatite-intertwined hybrid nanofibres for the mineralization of osteoblasts. Sujana A; Venugopal JR; Velmurugan B; Góra A; Salla M; Ramakrishna S J Tissue Eng Regen Med; 2017 Jun; 11(6):1853-1864. PubMed ID: 26354141 [TBL] [Abstract][Full Text] [Related]
31. Scaffold-Based Poly(Vinylidene Fluoride) and Its Copolymers: Materials, Fabrication Methods, Applications, and Perspectives. Sun W; Gao C; Liu H; Zhang Y; Guo Z; Lu C; Qiao H; Yang Z; Jin A; Chen J; Dai Q; Liu Y ACS Biomater Sci Eng; 2024 May; 10(5):2805-2826. PubMed ID: 38621173 [TBL] [Abstract][Full Text] [Related]
32. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950 [TBL] [Abstract][Full Text] [Related]
33. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Tian L; Prabhakaran MP; Hu J; Chen M; Besenbacher F; Ramakrishna S Colloids Surf B Biointerfaces; 2016 Sep; 145():420-429. PubMed ID: 27232305 [TBL] [Abstract][Full Text] [Related]
34. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
36. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
37. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
38. Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications. Grande D; Ramier J; Versace DL; Renard E; Langlois V N Biotechnol; 2017 Jul; 37(Pt A):129-137. PubMed ID: 27338013 [TBL] [Abstract][Full Text] [Related]
39. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers. Chang W; Mu X; Zhu X; Ma G; Li C; Xu F; Nie J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4369-76. PubMed ID: 23910355 [TBL] [Abstract][Full Text] [Related]