BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31016357)

  • 1. Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering.
    Ding Y; Wang KF; Wang WJ; Ma YR; Shi TQ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4313-4324. PubMed ID: 31016357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art.
    Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concomitant knockout of target and transporter genes in filamentous fungi by genome co-editing.
    Tamano K
    Microbiologyopen; 2022 Apr; 11(2):e1280. PubMed ID: 35478291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Gene Editing: From Basic Mechanisms to Improved Strategies for Enhanced Genome Engineering In Vivo.
    Salsman J; Masson JY; Orthwein A; Dellaire G
    Curr Gene Ther; 2017; 17(4):263-274. PubMed ID: 29173169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.
    Li T; Liu B; Chen CY; Yang B
    J Genet Genomics; 2016 May; 43(5):297-305. PubMed ID: 27180265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Mediated Genome Editing and Gene Repression in Scheffersomyces stipitis.
    Cao M; Gao M; Ploessl D; Song C; Shao Z
    Biotechnol J; 2018 Sep; 13(9):e1700598. PubMed ID: 29917323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 9. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges to increasing targeting efficiency in genome engineering.
    Horii T; Hatada I
    J Reprod Dev; 2016; 62(1):7-9. PubMed ID: 26688299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for In Vivo Genome Editing in Nondividing Cells.
    Nami F; Basiri M; Satarian L; Curtiss C; Baharvand H; Verfaillie C
    Trends Biotechnol; 2018 Aug; 36(8):770-786. PubMed ID: 29685818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria.
    Behler J; Vijay D; Hess WR; Akhtar MK
    Trends Biotechnol; 2018 Oct; 36(10):996-1010. PubMed ID: 29937051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial cell factories based on filamentous bacteria, yeasts, and fungi.
    Ding Q; Ye C
    Microb Cell Fact; 2023 Jan; 22(1):20. PubMed ID: 36717860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris.
    Cai P; Duan X; Wu X; Gao L; Ye M; Zhou YJ
    Nucleic Acids Res; 2021 Jul; 49(13):7791-7805. PubMed ID: 34197615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular tools for gene manipulation in filamentous fungi.
    Wang S; Chen H; Tang X; Zhang H; Chen W; Chen YQ
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8063-8075. PubMed ID: 28965220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in yeast genome engineering.
    David F; Siewers V
    FEMS Yeast Res; 2015 Feb; 15(1):1-14. PubMed ID: 25154295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TALEN utilization in rice genome modifications.
    Li T; Liu B; Chen CY; Yang B
    Methods; 2014 Aug; 69(1):9-16. PubMed ID: 24680698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies of genome editing in mycobacteria: Achievements and challenges.
    Choudhary E; Lunge A; Agarwal N
    Tuberculosis (Edinb); 2016 May; 98():132-8. PubMed ID: 27156629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.