These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31016381)

  • 1. Patch use in the arctic ground squirrel: effects of micro-topography and shrub encroachment in the Arctic Circle.
    Flower CE; Dalton JE; Whelan CJ; Brown JS; Gonzalez-Meler MA
    Oecologia; 2019 May; 190(1):243-254. PubMed ID: 31016381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.
    Wheeler HC; Chipperfield JD; Roland C; Svenning JC
    Oecologia; 2015 Jul; 178(3):915-29. PubMed ID: 25666700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska.
    Jespersen RG; Anderson-Smith M; Sullivan PF; Dial RJ; Welker JM
    PLoS One; 2023; 18(4):e0285030. PubMed ID: 37115765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.
    Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT
    Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.
    McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L
    Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.
    Sweet SK; Asmus A; Rich ME; Wingfield J; Gough L; Boelman NT
    Ecol Appl; 2015 Apr; 25(3):779-90. PubMed ID: 26214922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term recovery patterns of arctic tundra after winter seismic exploration.
    Jorgenson JC; Ver Hoef JM; Jorgenson MT
    Ecol Appl; 2010 Jan; 20(1):205-21. PubMed ID: 20349841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.
    Boelman NT; Gough L; Wingfield J; Goetz S; Asmus A; Chmura HE; Krause JS; Perez JH; Sweet SK; Guay KC
    Glob Chang Biol; 2015 Apr; 21(4):1508-20. PubMed ID: 25294359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-fire vegetation succession in the Siberian subarctic tundra over 45 years.
    Heim RJ; Bucharova A; Brodt L; Kamp J; Rieker D; Soromotin AV; Yurtaev A; Hölzel N
    Sci Total Environ; 2021 Mar; 760():143425. PubMed ID: 33172629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra.
    von Oppen J; Assmann JJ; Bjorkman AD; Treier UA; Elberling B; Nabe-Nielsen J; Normand S
    Glob Chang Biol; 2022 Dec; 28(24):7296-7312. PubMed ID: 36083034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arctic shrub growth trajectories differ across soil moisture levels.
    Ackerman D; Griffin D; Hobbie SE; Finlay JC
    Glob Chang Biol; 2017 Oct; 23(10):4294-4302. PubMed ID: 28267242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.
    Yu Q; Epstein H; Engstrom R; Walker D
    Glob Chang Biol; 2017 Sep; 23(9):3895-3907. PubMed ID: 28276177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research.
    Ravolainen V; Soininen EM; Jónsdóttir IS; Eischeid I; Forchhammer M; van der Wal R; Pedersen ÅØ
    Ambio; 2020 Mar; 49(3):666-677. PubMed ID: 31955396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities.
    Euskirchen ES; Serbin SP; Carman TB; Fraterrigo JM; Genet H; Iversen CM; Salmon V; McGuire AD
    Ecol Appl; 2022 Mar; 32(2):e2499. PubMed ID: 34787932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.
    Thompson SJ; Handel CM; Richardson RM; McNew LB
    PLoS One; 2016; 11(11):e0164755. PubMed ID: 27851768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change?
    Speed JDM; Chimal-Ballesteros JA; Martin MD; Barrio IC; Vuorinen KEM; Soininen EM
    Glob Chang Biol; 2021 Dec; 27(24):6568-6577. PubMed ID: 34592044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s.
    Frost GV; Epstein HE
    Glob Chang Biol; 2014 Apr; 20(4):1264-77. PubMed ID: 24115456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tundra be dammed: Beaver colonization of the Arctic.
    Tape KD; Jones BM; Arp CD; Nitze I; Grosse G
    Glob Chang Biol; 2018 Oct; 24(10):4478-4488. PubMed ID: 29845698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories.
    Hobbie SE; Gough L
    Oecologia; 2004 Jun; 140(1):113-24. PubMed ID: 15164284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.
    Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC
    Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.