These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31016416)

  • 1. Synthesis of Large-Area Single-Layer Graphene Using Refined Cooking Palm Oil on Copper Substrate by Spray Injector-Assisted CVD.
    Maarof S; Ali AA; Hashim AM
    Nanoscale Res Lett; 2019 Apr; 14(1):143. PubMed ID: 31016416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature Chemical Vapor Deposition Growth of Graphene Layers on Copper Substrate Using Camphor Precursor.
    Kavitha K; Urade AR; Kaur G; Lahiri I
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7698-7704. PubMed ID: 32711645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical vapor deposition synthesis and Raman spectroscopic characterization of large-area graphene sheets.
    Liao CD; Lu YY; Tamalampudi SR; Cheng HC; Chen YT
    J Phys Chem A; 2013 Oct; 117(39):9454-61. PubMed ID: 23461419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Efficiency Study of Graphene Synthesis on Copper Substrate via Chemical Vapor Deposition Method with Methanol Precursor.
    Huang BR; Hung SC; Ho YS; Chen YS; Yang WD
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD).
    Hwang J; Kim M; Cha HY; Spencer MG; Lee JW
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2979-83. PubMed ID: 24734720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply.
    Xu X; Zhang Z; Qiu L; Zhuang J; Zhang L; Wang H; Liao C; Song H; Qiao R; Gao P; Hu Z; Liao L; Liao Z; Yu D; Wang E; Ding F; Peng H; Liu K
    Nat Nanotechnol; 2016 Nov; 11(11):930-935. PubMed ID: 27501317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.
    Wu Q; Jung SJ; Jang SK; Lee J; Jeon I; Suh H; Kim YH; Lee YH; Lee S; Song YJ
    Nanoscale; 2015 Jun; 7(23):10357-61. PubMed ID: 26006180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Vapor Deposited Few-Layer Graphene as an Electron Field Emitter.
    Behural SK; Nayak S; Yang Q; Hirose A; Janil O
    J Nanosci Nanotechnol; 2016 Jan; 16(1):287-95. PubMed ID: 27398456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric Pressure Chemical Vapor Deposition of Graphene Using a Liquid Benzene Precursor.
    Kang C; Jung DH; Lee JS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9098-103. PubMed ID: 26726650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the CVD Synthesis of Graphene on Ge(100): toward Layer-by-Layer Growth.
    Scaparro AM; Miseikis V; Coletti C; Notargiacomo A; Pea M; De Seta M; Di Gaspare L
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33083-33090. PubMed ID: 27934132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple growth of graphene from a pre-dissolved carbon source.
    Fazi A; Nylander A; Zehri A; Sun J; Malmberg P; Ye L; Liu J; Fu Y
    Nanotechnology; 2020 Aug; 31(34):345601. PubMed ID: 32369782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical vapour deposition of graphene on copper-nickel alloys: the simulation of a thermodynamic and kinetic approach.
    Al-Hilfi SH; Derby B; Martin PA; Whitehead JC
    Nanoscale; 2020 Jul; 12(28):15283-15294. PubMed ID: 32647854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity.
    Wassei JK; Mecklenburg M; Torres JA; Fowler JD; Regan BC; Kaner RB; Weiller BH
    Small; 2012 May; 8(9):1415-22. PubMed ID: 22351509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect-Free Graphene Synthesized Directly at 150 °C via Chemical Vapor Deposition with No Transfer.
    Park BJ; Choi JS; Eom JH; Ha H; Kim HY; Lee S; Shin H; Yoon SG
    ACS Nano; 2018 Feb; 12(2):2008-2016. PubMed ID: 29390178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lift-Off Assisted Patterning of Few Layers Graphene.
    Verna A; Marasso SL; Rivolo P; Parmeggiani M; Laurenti M; Cocuzza M
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31242653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.