These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1273 related articles for article (PubMed ID: 31016442)

  • 1. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
    Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study.
    Yasaka K; Akai H; Abe O; Kiryu S
    Radiology; 2018 Mar; 286(3):887-896. PubMed ID: 29059036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver.
    Oestmann PM; Wang CJ; Savic LJ; Hamm CA; Stark S; Schobert I; Gebauer B; Schlachter T; Lin M; Weinreb JC; Batra R; Mulligan D; Zhang X; Duncan JS; Chapiro J
    Eur Radiol; 2021 Jul; 31(7):4981-4990. PubMed ID: 33409782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Learning Workflow for Mass-Forming Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma Classification Based on MRI.
    Liu Y; Wang B; Mo X; Tang K; He J; Hao J
    Curr Oncol; 2022 Dec; 30(1):529-544. PubMed ID: 36661691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency Improvement in a Busy Radiology Practice: Determination of Musculoskeletal Magnetic Resonance Imaging Protocol Using Deep-Learning Convolutional Neural Networks.
    Lee YH
    J Digit Imaging; 2018 Oct; 31(5):604-610. PubMed ID: 29619578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks.
    Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B
    Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks.
    Zhou W; Wang G; Xie G; Zhang L
    Med Phys; 2019 Sep; 46(9):3951-3960. PubMed ID: 31169907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma.
    Zhang Y; Lv X; Qiu J; Zhang B; Zhang L; Fang J; Li M; Chen L; Wang F; Liu S; Zhang S
    J Magn Reson Imaging; 2021 Jul; 54(1):134-143. PubMed ID: 33559293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging.
    Stollmayer R; Budai BK; Tóth A; Kalina I; Hartmann E; Szoldán P; Bérczi V; Maurovich-Horvat P; Kaposi PN
    World J Gastroenterol; 2021 Sep; 27(35):5978-5988. PubMed ID: 34629814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prior to Initiation of Chemotherapy, Can We Predict Breast Tumor Response? Deep Learning Convolutional Neural Networks Approach Using a Breast MRI Tumor Dataset.
    Ha R; Chin C; Karcich J; Liu MZ; Chang P; Mutasa S; Pascual Van Sant E; Wynn RT; Connolly E; Jambawalikar S
    J Digit Imaging; 2019 Oct; 32(5):693-701. PubMed ID: 30361936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending 2-D Convolutional Neural Networks to 3-D for Advancing Deep Learning Cancer Classification With Application to MRI Liver Tumor Differentiation.
    Trivizakis E; Manikis GC; Nikiforaki K; Drevelegas K; Constantinides M; Drevelegas A; Marias K
    IEEE J Biomed Health Inform; 2019 May; 23(3):923-930. PubMed ID: 30561355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning to differentiate parkinsonian disorders separately using single midsagittal MR imaging: a proof of concept study.
    Kiryu S; Yasaka K; Akai H; Nakata Y; Sugomori Y; Hara S; Seo M; Abe O; Ohtomo K
    Eur Radiol; 2019 Dec; 29(12):6891-6899. PubMed ID: 31264017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study.
    Yamashita R; Mittendorf A; Zhu Z; Fowler KJ; Santillan CS; Sirlin CB; Bashir MR; Do RKG
    Abdom Radiol (NY); 2020 Jan; 45(1):24-35. PubMed ID: 31696269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images.
    Zhou J; Luo LY; Dou Q; Chen H; Chen C; Li GJ; Jiang ZF; Heng PA
    J Magn Reson Imaging; 2019 Oct; 50(4):1144-1151. PubMed ID: 30924997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DLNLF-net: Denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma.
    Huang H; Xie Y; Wang G; Zhang L; Zhou W
    Comput Methods Programs Biomed; 2022 Dec; 227():107201. PubMed ID: 36335751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint segmentation and classification of hepatic lesions in ultrasound images using deep learning.
    Ryu H; Shin SY; Lee JY; Lee KM; Kang HJ; Yi J
    Eur Radiol; 2021 Nov; 31(11):8733-8742. PubMed ID: 33881566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.