BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31016655)

  • 1. Transcriptomic Analysis of Cholestatic Compounds In Vitro.
    Parmentier C; Couttet P; Uteng M; Wolf A; Richert L
    Methods Mol Biol; 2019; 1981():175-186. PubMed ID: 31016655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of gene expression profiles from cholestatic hepatotoxicants in vitro against human in vivo cholestasis.
    Van den Hof WFPM; Coonen MLJ; van Herwijnen M; Brauers K; Jennen D; Olde Damink SWM; Schaap FG; Kleinjans JCS
    Toxicol In Vitro; 2017 Oct; 44():322-329. PubMed ID: 28778767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of transcriptomic signature as a valuable tool to study drug-induced cholestasis in primary human hepatocytes.
    Parmentier C; Couttet P; Wolf A; Zaccharias T; Heyd B; Bachellier P; Uteng M; Richert L
    Arch Toxicol; 2017 Aug; 91(8):2879-2893. PubMed ID: 28188341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Drug-Induced Cholestasis Potential in Sandwich-Cultured Human Hepatocytes.
    Deferm N; Richert L; Van Brantegem P; De Vocht T; Qi B; de Witte P; Bouillon T; Annaert P
    Methods Mol Biol; 2019; 1981():335-350. PubMed ID: 31016665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-individual differences in the susceptibility of primary human hepatocytes towards drug-induced cholestasis are compound and time dependent.
    Parmentier C; Hendriks DFG; Heyd B; Bachellier P; Ingelman-Sundberg M; Richert L
    Toxicol Lett; 2018 Oct; 295():187-194. PubMed ID: 29913214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes.
    Oorts M; Baze A; Bachellier P; Heyd B; Zacharias T; Annaert P; Richert L
    Toxicol In Vitro; 2016 Aug; 34():179-186. PubMed ID: 27046439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis.
    Chatterjee S; Richert L; Augustijns P; Annaert P
    Toxicol Appl Pharmacol; 2014 Jan; 274(1):124-36. PubMed ID: 24211272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Factors in the Assessment of Cholestatic Liver Injury In Vitro.
    Woolbright BL; Jaeschke H
    Methods Mol Biol; 2015; 1250():363-76. PubMed ID: 26272158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C-DILI™ Assay: An Integrated In Vitro Approach to Predict Cholestatic Hepatotoxicity.
    Jackson JP; Brouwer KR
    Methods Mol Biol; 2019; 1981():75-85. PubMed ID: 31016648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the Clinical Risk of Drug-Induced Cholestatic Liver Injury Using an In Vitro Sandwich Cultured Hepatocyte Assay.
    Susukida T; Sekine S; Nozaki M; Tokizono M; Ito K
    Drug Metab Dispos; 2015 Nov; 43(11):1760-8. PubMed ID: 26329788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organotypic 3D HepaRG Liver Model for Assessment of Drug-Induced Cholestasis.
    Ramaiahgari SC; Ferguson SS
    Methods Mol Biol; 2019; 1981():313-323. PubMed ID: 31016663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both cholestatic and steatotic drugs trigger extensive alterations in the mRNA level of biliary transporters in rat hepatocytes: Application to develop new predictive biomarkers for early drug development.
    Donato MT; López-Riera M; Castell JV; Gómez-Lechón MJ; Jover R
    Toxicol Lett; 2016 Nov; 263():58-67. PubMed ID: 27765674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Assay System to Detect Drug-Induced Bile Acid-Dependent Cytotoxicity Using Hepatocytes.
    Takemura A; Ito K
    Methods Mol Biol; 2022; 2544():119-127. PubMed ID: 36125714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Activation of Cholestatic Drug-Induced Bile Acid-Dependent Toxicity in Human Sandwich-Cultured Hepatocytes.
    Ogimura E; Tokizono M; Sekine S; Nakagawa T; Bando K; Ito K
    J Pharm Sci; 2017 Sep; 106(9):2509-2514. PubMed ID: 28465153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of Cholestatic and Necrotic Hepatotoxicants Using Transcriptomics on Human Precision-Cut Liver Slices.
    Vatakuti S; Pennings JL; Gore E; Olinga P; Groothuis GM
    Chem Res Toxicol; 2016 Mar; 29(3):342-51. PubMed ID: 26881866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of precision-cut liver slices to study drug-induced cholestasis: a transcriptomics approach.
    Vatakuti S; Olinga P; Pennings JLA; Groothuis GMM
    Arch Toxicol; 2017 Mar; 91(3):1401-1412. PubMed ID: 27344345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability.
    Hendriks DF; Fredriksson Puigvert L; Messner S; Mortiz W; Ingelman-Sundberg M
    Sci Rep; 2016 Oct; 6():35434. PubMed ID: 27759057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of RNA interference to improve mechanistic understanding of omics responses to a hepatotoxic drug in primary rat hepatocytes.
    Adler M; Leich E; Ellinger-Ziegelbauer H; Hewitt P; Dekant W; Rosenwald A; Mally A
    Toxicology; 2014 Dec; 326():86-95. PubMed ID: 25456269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of bile canalicular network formation in rat sandwich cultured hepatocytes by drugs associated with risk of severe liver injury.
    Takemura A; Izaki A; Sekine S; Ito K
    Toxicol In Vitro; 2016 Sep; 35():121-30. PubMed ID: 27256767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.
    Deharde D; Schneider C; Hiller T; Fischer N; Kegel V; Lübberstedt M; Freyer N; Hengstler JG; Andersson TB; Seehofer D; Pratschke J; Zeilinger K; Damm G
    Arch Toxicol; 2016 Oct; 90(10):2497-511. PubMed ID: 27325308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.