BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31016677)

  • 1. Evidence for relaxed selection of mitogenome in rapid-flow cyprinids.
    Lu Y; Xing H; Zhang D
    Genes Genomics; 2019 Jul; 41(7):863-869. PubMed ID: 31016677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecific variation in hypoxia tolerance, swimming performance and plasticity in cyprinids that prefer different habitats.
    Fu SJ; Fu C; Yan GJ; Cao ZD; Zhang AJ; Pang X
    J Exp Biol; 2014 Feb; 217(Pt 4):590-7. PubMed ID: 24198253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of selection in the evolution of marine turtles mitogenomes.
    Ramos EKDS; Freitas L; Nery MF
    Sci Rep; 2020 Oct; 10(1):16953. PubMed ID: 33046778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.
    Xia JH; Li HL; Zhang Y; Meng ZN; Lin HR
    Mitochondrial DNA A DNA Mapp Seq Anal; 2018 May; 29(4):511-524. PubMed ID: 28423967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera.
    Li Y; Zhang R; Liu S; Donath A; Peters RS; Ware J; Misof B; Niehuis O; Pfrender ME; Zhou X
    BMC Evol Biol; 2017 Dec; 17(1):269. PubMed ID: 29281964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.).
    Jacobsen MW; da Fonseca RR; Bernatchez L; Hansen MM
    Mol Phylogenet Evol; 2016 Feb; 95():161-70. PubMed ID: 26654959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural selection drives the evolution of mitogenomes in Acrossocheilus.
    Zhao D; Guo Y; Gao Y
    PLoS One; 2022; 17(10):e0276056. PubMed ID: 36227932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial OXPHOS genes provides insights into genetics basis of hypoxia adaptation in anchialine cave shrimps.
    Guo H; Yang H; Tao Y; Tang D; Wu Q; Wang Z; Tang B
    Genes Genomics; 2018 Nov; 40(11):1169-1180. PubMed ID: 30315520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the mitogenome of Sarcocheilichthys nigripinnis (Cypriniformes: Cyprinidae).
    Wang H; He L; Yang X; Li C; Gu J; Wang X; Li G; Yang S; Cao L
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(2):1225-6. PubMed ID: 25090384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete mitochondrial genome of Acrossocheilus stenotaeniatus (Osteichthyes: Cyprinidae).
    Yuan C; Chai A; Cui Q; Ye E; Zhang J
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(2):1113-4. PubMed ID: 25208180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landscape genomics: natural selection drives the evolution of mitogenome in penguins.
    Ramos B; González-Acuña D; Loyola DE; Johnson WE; Parker PG; Massaro M; Dantas GPM; Miranda MD; Vianna JA
    BMC Genomics; 2018 Jan; 19(1):53. PubMed ID: 29338715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes.
    Elbassiouny AA; Lovejoy NR; Chang BSW
    Philos Trans R Soc Lond B Biol Sci; 2020 Jan; 375(1790):20190179. PubMed ID: 31787042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish.
    Pavlova A; Gan HM; Lee YP; Austin CM; Gilligan DM; Lintermans M; Sunnucks P
    Heredity (Edinb); 2017 May; 118(5):466-476. PubMed ID: 28051058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct evolutionary patterns between two duplicated color vision genes within cyprinid fishes.
    Li Z; Gan X; He S
    J Mol Evol; 2009 Oct; 69(4):346-59. PubMed ID: 19838750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau.
    Zhang D; Yu M; Hu P; Peng S; Liu Y; Li W; Wang C; He S; Zhai W; Xu Q; Chen L
    G3 (Bethesda); 2017 Apr; 7(4):1267-1276. PubMed ID: 28209761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete mitogenome of Acrossocheilus kreyenbergii (Cypriniformes; Cyprinidae).
    Zhou C; Zhao H; Li H
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(2):1068-9. PubMed ID: 24963772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes.
    Zwonitzer KD; Iverson ENK; Sterling JE; Weaver RJ; Maclaine BA; Havird JC
    Am Nat; 2023 Oct; 202(4):E121-E129. PubMed ID: 37792916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats.
    Sebastian W; Sukumaran S; Gopalakrishnan A
    Heredity (Edinb); 2022 Apr; 128(4):236-249. PubMed ID: 35256764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete mitochondrial genome sequence of Predatory carp Chanodichthys erythropterus (Cypriniformes: Cyprinidae).
    Chen L; Li B; Zhou L; Zhao G
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(2):1119-20. PubMed ID: 25010069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting patterns of selective constraints in nuclear-encoded genes of the oxidative phosphorylation pathway in holometabolous insects and their possible role in hybrid breakdown in Nasonia.
    Gibson JD; Niehuis O; Verrelli BC; Gadau J
    Heredity (Edinb); 2010 Mar; 104(3):310-7. PubMed ID: 20087391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.