These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31016710)

  • 21. Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
    Cramer J; Rangam G; Marx A; Restle T
    Chembiochem; 2008 May; 9(8):1243-50. PubMed ID: 18399510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct.
    Perlow RA; Broyde S
    J Mol Biol; 2003 Apr; 327(4):797-818. PubMed ID: 12654264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Full Pre-Steady-State Kinetic Analysis of Single Nucleotide Incorporation by DNA Polymerases.
    Renders M; Frère JM; Toye D; Herdewijn P
    Curr Protoc Nucleic Acid Chem; 2019 Sep; 78(1):e98. PubMed ID: 31529783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Consecutive ribonucleoside monophosphates on template inhibit DNA replication by T7 DNA polymerase or by T7 polymerase and helicase complex.
    Zou Z; Chen Z; Cai Y; Yang H; Du K; Li B; Jiang Y; Zhang H
    Biochimie; 2018 Aug; 151():128-138. PubMed ID: 29883747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of benzo[a]pyrene DNA adducts on Escherichia coli DNA polymerase I (Klenow fragment) primer-template interactions: evidence for inhibition of the catalytically active ternary complex formation.
    Alekseyev YO; Dzantiev L; Romano LJ
    Biochemistry; 2001 Feb; 40(7):2282-90. PubMed ID: 11329298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of partial charge interactions and base stacking to the efficiency of primer extension at and beyond abasic sites in DNA.
    Xia S; Vashishtha A; Bulkley D; Eom SH; Wang J; Konigsberg WH
    Biochemistry; 2012 Jun; 51(24):4922-31. PubMed ID: 22630605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pre-steady-state kinetic studies of the fidelity of human DNA polymerase mu.
    Roettger MP; Fiala KA; Sompalli S; Dong Y; Suo Z
    Biochemistry; 2004 Nov; 43(43):13827-38. PubMed ID: 15504045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning the reaction site for enzyme-free primer-extension reactions through small molecule substituents.
    Rojas Stütz JA; Richert C
    Chemistry; 2006 Mar; 12(9):2472-81. PubMed ID: 16402399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation.
    Reardon JE
    Biochemistry; 1992 May; 31(18):4473-9. PubMed ID: 1374638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid templating mechanisms in selection of nucleotides opposite abasic sites by a family a DNA polymerase.
    Obeid S; Welte W; Diederichs K; Marx A
    J Biol Chem; 2012 Apr; 287(17):14099-108. PubMed ID: 22318723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of methionine 184 of human immunodeficiency virus type-1 reverse transcriptase in the polymerase function and fidelity of DNA synthesis.
    Pandey VN; Kaushik N; Rege N; Sarafianos SG; Yadav PN; Modak MJ
    Biochemistry; 1996 Feb; 35(7):2168-79. PubMed ID: 8652558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the mechanism of DNA polymerase alpha. Nascent chain elongation, steady state kinetics, and the initiation phase of DNA synthesis.
    Detera SD; Becerra SP; Swack JA; Wilson SH
    J Biol Chem; 1981 Jul; 256(13):6933-43. PubMed ID: 7240254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ordered sequential mechanism of substrate recognition and binding by KB cell DNA polymerase alpha.
    Fisher PA; Korn D
    Biochemistry; 1981 Aug; 20(16):4560-9. PubMed ID: 7295634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha.
    Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC
    Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation of the kinetics of finger domain mutants in RB69 DNA polymerase with its structure.
    Yang G; Franklin M; Li J; Lin TC; Konigsberg W
    Biochemistry; 2002 Feb; 41(8):2526-34. PubMed ID: 11851399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the templating nucleotide during initiation of phi29 DNA replication.
    Truniger V; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 2002 Apr; 318(1):83-96. PubMed ID: 12054770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-nucleic acid interaction in reactions catalyzed with DNA polymerases.
    Knorre DG; Lavrik OI; Nevinsky GA
    Biochimie; 1988 May; 70(5):655-61. PubMed ID: 3139084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.