BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31016996)

  • 21. Potential of four aquatic plant species to remove
    Vanhoudt N; Van Ginneken P; Nauts R; Van Hees M
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27187-27195. PubMed ID: 30027375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies.
    Kumar V; Singh J; Kumar P
    Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes.
    Sanità di Toppi L; Vurro E; Rossi L; Marabottini R; Musetti R; Careri M; Maffini M; Mucchino C; Corradini C; Badiani M
    Chemosphere; 2007 Jun; 68(4):769-80. PubMed ID: 17292445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel.
    Zimmels Y; Kirzhner F; Malkovskaja A
    J Environ Manage; 2006 Dec; 81(4):420-8. PubMed ID: 16597484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes--a case study at JK Paper mill, Rayagada, India.
    Mishra S; Mohanty M; Pradhan C; Patra HK; Das R; Sahoo S
    Environ Monit Assess; 2013 May; 185(5):4347-59. PubMed ID: 22993029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics.
    Sudiarto SIA; Renggaman A; Choi HL
    J Environ Manage; 2019 Feb; 231():763-769. PubMed ID: 30412795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland.
    Hadad HR; Mufarrege MM; Di Luca GA; Maine MA
    Water Sci Technol; 2017 Apr; 2017(1):270-275. PubMed ID: 29698241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (
    Şentürk İ; Eyceyurt Divarcı NS; Öztürk M
    Int J Phytoremediation; 2023; 25(5):550-561. PubMed ID: 35786212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-site phytoremediation applicability assessment in Alur Ilmu, Universiti Kebangsaan Malaysia based on spatial and pollution removal analyses.
    Mahmud MH; Lee KE; Goh TL
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22873-22884. PubMed ID: 28905277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of electro-assisted phytoremediation (EAPR) system for heavy metal removal from synthetic leachate using
    Chan MY; Tee CS; Chai TT; Sim YL; Beh WL
    Int J Phytoremediation; 2022; 24(13):1376-1384. PubMed ID: 35191343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of Lemna minor and Eichhornia crassipes for the phytoremediation of water contaminated with Nickel (II).
    Moreno-Rubio N; Ortega-Villamizar D; Marimon-Bolívar W; Bustillo-Lecompte C; Tejeda-Benítez LP
    Environ Monit Assess; 2022 Nov; 195(1):119. PubMed ID: 36396866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An experimental and prediction modeling study on water lettuce (Pistia stratiotes L.) assisted heavy metals removal from glass industry effluent.
    Singh J; Alhag SK; Al-Shahari EA; Al-Shuraym LA; Alsudays IM; Ahmed MT; Eid EM; Fayssal SA; Kumar P; Malyan SK; Singh O; Kumar V
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28090-28104. PubMed ID: 38530520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina).
    Alonso X; Hadad HR; Córdoba C; Polla W; Reyes MS; Fernández V; Granados I; Marino L; Villalba A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):312-323. PubMed ID: 29034426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uptake of perfluoroalkyl substances PFOS and PFOA by free-floating hydrophytes
    Kenyon A; Masisak J; Satchwell M; Wu J; Newman L
    Int J Phytoremediation; 2024 Apr; ():1-10. PubMed ID: 38584457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of the bioaccumulative efficiency of
    Ergönül MB; Nassouhi D; Atasağun S
    Int J Phytoremediation; 2020; 22(2):201-209. PubMed ID: 31475565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microcosm investigation of fe (iron) removal using macrophytes of ramsar lake: A phytoremediation approach.
    Singh MM; Rai PK
    Int J Phytoremediation; 2016 Dec; 18(12):1231-6. PubMed ID: 27258126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond.
    Pandey VC
    Int J Phytoremediation; 2016; 18(5):450-2. PubMed ID: 26595413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.