These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31017153)

  • 1. Reversible gas-solid reaction in an electronically-stimulated palladium nanogap.
    Tamaoka T; Aso R; Yoshida H; Takeda S
    Nanoscale; 2019 May; 11(18):8715-8717. PubMed ID: 31017153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.
    Bright AN; Yoshida K; Tanaka N
    Ultramicroscopy; 2013 Jan; 124():46-51. PubMed ID: 23142744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into Hydrogen Gas Environment-Promoted Nanostructural Changes in Stressed and Relaxed Palladium by Environmental Transmission Electron Microscopy and Variable-Energy Positron Annihilation Spectroscopy.
    Roddatis V; Bongers MD; Vink R; Burlaka V; Čížek J; Pundt A
    J Phys Chem Lett; 2018 Sep; 9(18):5246-5253. PubMed ID: 30152701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electron beam irradiation in gas atmosphere during ETEM.
    Tokunaga T; Kawakami T; Higuchi K; Yamamoto Y; Yamamoto T
    Micron; 2022 Jul; 158():103289. PubMed ID: 35490496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector.
    Takeda S; Kuwauchi Y; Yoshida H
    Ultramicroscopy; 2015 Apr; 151():178-190. PubMed ID: 25498142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science.
    Takeda S; Yoshida H
    Microscopy (Oxf); 2013 Feb; 62(1):193-203. PubMed ID: 23325929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode.
    Chung YH; Lee T; Park HJ; Yun WS; Min J; Choi JW
    Nanotechnology; 2013 Sep; 24(36):365301. PubMed ID: 23942185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Calibration for In Situ Environmental Transmission Electron Microscopy Experiments.
    Winterstein JP; Lin PA; Sharma R
    Microsc Microanal; 2015 Dec; 21(6):1622-1628. PubMed ID: 26441334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas-solid interactions.
    Jinschek JR
    Chem Commun (Camb); 2014 Mar; 50(21):2696-706. PubMed ID: 24496466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanogap Formation Using a Chromium Oxide Film and Its Application as a Palladium Hydrogen Switch.
    Cho M; Kim T; Cho I; Gao M; Kang K; Yang D; Park I
    Langmuir; 2022 Jan; 38(3):1072-1078. PubMed ID: 34995074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution.
    Wu YA; Li L; Li Z; Kinaci A; Chan MK; Sun Y; Guest JR; McNulty I; Rajh T; Liu Y
    ACS Nano; 2016 Mar; 10(3):3738-46. PubMed ID: 26937679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating Helium Bubble Nucleation and Growth through Simultaneous In-Situ Cryogenic, Ion Implantation, and Environmental Transmission Electron Microscopy.
    Taylor CA; Briggs S; Greaves G; Monterrosa A; Aradi E; Sugar JD; Robinson DB; Hattar K; Hinks JA
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect generation in Pd layers by 'smart' films with high H-affinity.
    Burlaka V; Roddatis V; Bongers MD; Pundt A
    Sci Rep; 2017 Aug; 7(1):9564. PubMed ID: 28842694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of nanogap separation by surface-catalyzed chemical deposition.
    Park HJ; Lee CY; Chung YH; Chi YS; Choi IS; Yun WS
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6400-3. PubMed ID: 22121723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution environmental transmission electron microscopy: modeling and experimental verification.
    Suzuki M; Yaguchi T; Zhang XF
    Microscopy (Oxf); 2013 Aug; 62(4):437-50. PubMed ID: 23427290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suspended and localized single nanostructure growth across a nanogap by an electric field.
    Lee CH; Han JH; Schneider SC; Josse F
    Nanotechnology; 2011 Oct; 22(40):405301. PubMed ID: 21911928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale electron microscopy at ambient pressure.
    Creemer JF; Helveg S; Hoveling GH; Ullmann S; Molenbroek AM; Sarro PM; Zandbergen HW
    Ultramicroscopy; 2008 Aug; 108(9):993-8. PubMed ID: 18556124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of nitrided si(100) by gaseous atomic and molecular oxygen.
    Gerrard AL; Chen JJ; Weaver JF
    J Phys Chem B; 2005 Apr; 109(16):8017-28. PubMed ID: 16851937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing Progressive Atomic Change in the Metal Surface Structure Made by Ultrafast Electronic Interactions in an Ambient Environment.
    Aso R; Ogawa Y; Tamaoka T; Yoshida H; Takeda S
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16028-16032. PubMed ID: 31486177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing extremely limited H₂ contents by Pd nanogap connected to an amorphous InGaZnO thin-film transistor.
    Lee YT; Jung H; Nam SH; Jeon PJ; Kim JS; Jang B; Lee W; Im S
    Nanoscale; 2013 Oct; 5(19):8915-20. PubMed ID: 23942638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.