These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31017163)

  • 21. A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells.
    Cai B; Ji TT; Wang N; Li XB; He RX; Liu W; Wang G; Zhao XZ; Wang L; Wang Z
    Lab Chip; 2019 Jan; 19(3):422-431. PubMed ID: 30575843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device.
    Deng Y; Zhang N; Zhao L; Yu X; Ji X; Liu W; Guo S; Liu K; Zhao XZ
    Lab Chip; 2011 Dec; 11(23):4117-21. PubMed ID: 22012540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Lattice Structure Control of Ordered Macroporous Material by Self-Assembly of Liquid Droplets.
    Iwai Y; Uchida Y; Yabu H; Nishiyama N
    Macromol Rapid Commun; 2017 Jan; 38(1):. PubMed ID: 27775196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unique porous microspheres with dense core and a porous layer prepared by a novel S/O/W emulsion technique.
    Takai C; Hotta T; Shiozaki S; Boonsongrit Y; Abe H
    Chem Commun (Camb); 2009 Oct; (37):5533-5. PubMed ID: 19753347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Droplet-Based Microfluidic Device Easily Assembled from Commercially Available Modules Online Coupled with ICPMS for Determination of Silver in Single Cell.
    Yu X; Chen B; He M; Wang H; Hu B
    Anal Chem; 2019 Feb; 91(4):2869-2875. PubMed ID: 30652466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions.
    Trebbin M; Krüger K; DePonte D; Roth SV; Chapman HN; Förster S
    Lab Chip; 2014 May; 14(10):1733-45. PubMed ID: 24671443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust scalable high throughput production of monodisperse drops.
    Amstad E; Chemama M; Eggersdorfer M; Arriaga LR; Brenner MP; Weitz DA
    Lab Chip; 2016 Oct; 16(21):4163-4172. PubMed ID: 27714028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation.
    Liu H; Piper JA; Li M
    Anal Chem; 2021 Aug; 93(31):10955-10965. PubMed ID: 34323465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A three-dimensional microfluidic approach to scaling up microencapsulation of cells.
    Tendulkar S; Mirmalek-Sani SH; Childers C; Saul J; Opara EC; Ramasubramanian MK
    Biomed Microdevices; 2012 Jun; 14(3):461-9. PubMed ID: 22245953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device.
    Xu JH; Chen R; Wang YD; Luo GS
    Lab Chip; 2012 May; 12(11):2029-36. PubMed ID: 22508390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tandem emulsification for high-throughput production of double emulsions.
    Eggersdorfer ML; Zheng W; Nawar S; Mercandetti C; Ofner A; Leibacher I; Koehler S; Weitz DA
    Lab Chip; 2017 Feb; 17(5):936-942. PubMed ID: 28197593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices.
    An R; Hoffman MD; Donoghue MA; Hunt AJ; Jacobson SC
    Opt Express; 2008 Sep; 16(19):15206-11. PubMed ID: 18795059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.
    Brassard D; Malic L; Normandin F; Tabrizian M; Veres T
    Lab Chip; 2008 Aug; 8(8):1342-9. PubMed ID: 18651077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface treatment of flow channels in microfluidic devices fabricated by stereolithography.
    Ohtani K; Tsuchiya M; Sugiyama H; Katakura T; Hayakawa M; Kanai T
    J Oleo Sci; 2014; 63(1):93-6. PubMed ID: 24389798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.