These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 31017761)
1. 15% Efficiency Ultrathin Silicon Solar Cells with Fluorine-Doped Titanium Oxide and Chemically Tailored Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Asymmetric Heterocontact. He J; Hossain MA; Lin H; Wang W; Karuturi SK; Hoex B; Ye J; Gao P; Bullock J; Wan Y ACS Nano; 2019 Jun; 13(6):6356-6362. PubMed ID: 31017761 [TBL] [Abstract][Full Text] [Related]
2. Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells. Jäckle S; Liebhaber M; Gersmann C; Mews M; Jäger K; Christiansen S; Lips K Sci Rep; 2017 May; 7(1):2170. PubMed ID: 28526863 [TBL] [Abstract][Full Text] [Related]
3. Photoinduced Field-Effect Passivation from Negative Carrier Accumulation for High-Efficiency Silicon/Organic Heterojunction Solar Cells. Liu Z; Yang Z; Wu S; Zhu J; Guo W; Sheng J; Ye J; Cui Y ACS Nano; 2017 Dec; 11(12):12687-12695. PubMed ID: 29215861 [TBL] [Abstract][Full Text] [Related]
4. Heterojunction Hybrid Solar Cells by Formation of Conformal Contacts between PEDOT:PSS and Periodic Silicon Nanopyramid Arrays. Wang X; Liu Z; Yang Z; He J; Yang X; Yu T; Gao P; Ye J Small; 2018 Apr; 14(15):e1704493. PubMed ID: 29488322 [TBL] [Abstract][Full Text] [Related]
5. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation. He J; Gao P; Ling Z; Ding L; Yang Z; Ye J; Cui Y ACS Nano; 2016 Dec; 10(12):11525-11531. PubMed ID: 27935280 [TBL] [Abstract][Full Text] [Related]
6. Aluminum Halide-Based Electron-Selective Passivating Contacts for Crystalline Silicon Solar Cells. Gao K; Xing C; Xu D; Lou X; Wang X; Li K; Li W; Mao J; Zheng P; Zhang X; Yang X Small; 2024 Jul; 20(29):e2310352. PubMed ID: 38368257 [TBL] [Abstract][Full Text] [Related]
7. Dopant-Free and Carrier-Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives. Gao P; Yang Z; He J; Yu J; Liu P; Zhu J; Ge Z; Ye J Adv Sci (Weinh); 2018 Mar; 5(3):1700547. PubMed ID: 29593956 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process. Xie R; Ishijima N; Sugime H; Noda S Sci Rep; 2019 Aug; 9(1):12051. PubMed ID: 31427642 [TBL] [Abstract][Full Text] [Related]
9. Ultrathin Al Nam YH; Song JW; Park MJ; Sami A; Lee JH Nanotechnology; 2017 Apr; 28(15):155402. PubMed ID: 28303801 [TBL] [Abstract][Full Text] [Related]
10. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells. Shen X; Chen L; Pan J; Hu Y; Li S; Zhao J Nanoscale Res Lett; 2016 Dec; 11(1):532. PubMed ID: 27905094 [TBL] [Abstract][Full Text] [Related]
11. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells. Sun Y; Gao P; He J; Zhou S; Ying Z; Yang X; Xiang Y; Ye J Nanoscale Res Lett; 2016 Dec; 11(1):310. PubMed ID: 27352263 [TBL] [Abstract][Full Text] [Related]
12. Development of high conducting phosphorous doped nanocrystalline thin silicon films for silicon heterojunction solar cells application. Bhattacharya S; Pandey A; Alam S; Komarala VK Nanotechnology; 2024 May; 35(32):. PubMed ID: 38710179 [TBL] [Abstract][Full Text] [Related]
13. Improving Performance of Organic-Silicon Heterojunction Solar Cells Based on Textured Surface via Acid Processing. Dai X; Chen T; Cai H; Wen H; Sun Y ACS Appl Mater Interfaces; 2016 Jun; 8(23):14572-7. PubMed ID: 27232372 [TBL] [Abstract][Full Text] [Related]
14. Regionalizing Nitrogen Doping of Polysilicon Films Enabling High-Efficiency Tunnel Oxide Passivating Contact Silicon Solar Cells. Liu Z; Lin Z; Liu W; Yang L; Lin N; Liao M; Yu X; Yang Z; Zeng Y; Ye J Small; 2023 Dec; 19(49):e2304348. PubMed ID: 37621035 [TBL] [Abstract][Full Text] [Related]
15. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116 [TBL] [Abstract][Full Text] [Related]
16. Buried MoO Xia Z; Gao P; Sun T; Wu H; Tan Y; Song T; Lee ST; Sun B ACS Appl Mater Interfaces; 2018 Apr; 10(16):13767-13773. PubMed ID: 29608047 [TBL] [Abstract][Full Text] [Related]
17. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells. Lin W; Wu W; Liu Z; Qiu K; Cai L; Yao Z; Ai B; Liang Z; Shen H ACS Appl Mater Interfaces; 2018 Apr; 10(16):13645-13651. PubMed ID: 29624046 [TBL] [Abstract][Full Text] [Related]
18. Effect of Crystallographic Orientation and Nanoscale Surface Morphology on Poly-Si/SiO Kale AS; Nemeth W; Guthrey H; Nanayakkara SU; LaSalvia V; Theingi S; Findley D; Page M; Al-Jassim M; Young DL; Stradins P; Agarwal S ACS Appl Mater Interfaces; 2019 Nov; 11(45):42021-42031. PubMed ID: 31610646 [TBL] [Abstract][Full Text] [Related]
19. A High-Quality Dopant-Free Electron-Selective Passivating Contact Made from Ultra-Low Concentration Water Solution. Zeng L; Cai L; Wang Z; Chen N; Liu Z; Chen T; Pang Y; Wang W; Zhang H; Zhang Q; Feng Z; Gao P Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500945 [TBL] [Abstract][Full Text] [Related]
20. Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. Sheng J; Fan K; Wang D; Han C; Fang J; Gao P; Ye J ACS Appl Mater Interfaces; 2014 Sep; 6(18):16027-34. PubMed ID: 25157634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]